

\textbf{Z}_2^k\text{-actions fixing } \mathbb{RP}^2 \cup \mathbb{RP}^{\text{even}}

\textbf{Pedro L. Q. Pergher}
\textbf{Adriana Ramos}
\textbf{Rogério de Oliveira}

\textbf{Abstract} This paper determines, up to equivariant cobordism, all manifolds with \(Z_2^k \)-action whose fixed point set is \(\mathbb{RP}^2 \cup \mathbb{RP}^n \), where \(n > 2 \) is even.

\textbf{AMS Classification} (2.000 Revision) Primary 57R85; Secondary 57R75

\textbf{Keywords} involution, \(Z_2^k \)-action, fixed data, property \(\mathcal{H} \), equivariant cobordism class, characteristic number, projective space bundle, Steenrod operation, Conner’s formula, \(s \)-class.

\section{Introduction}

Suppose \(M \) is a smooth and closed manifold and \(T : M \to M \) is a smooth involution defined on \(M \). It is well known that the fixed point set of \(T, F \), is a finite and disjoint union of closed submanifolds of \(M \). For a given \(F \), a basic problem in this context is the classification, up to equivariant cobordism, of the pairs \((M,T)\) for which the fixed point set is \(F \). For related results, see for example [2], [3], [4], [10], [15], [6, Theorem 27.6], [1, Page 309], [16], [17] and [18]. Specifically, in [2], D. C. Royster studied this problem with \(F \) being the disjoint union of two real projective spaces, \(F = \mathbb{RP}^m \cup \mathbb{RP}^n \) (for \(F = \mathbb{RP}^n \), the classification was established in [6] and [16]), establishing the results via a case-by-case method depending on the parity of \(m \) and \(n \), with special arguments when one of the components is \(\mathbb{RP}^0 = \{\text{point}\} \), and leaving open the case in which \(m \) and \(n \) are even, with the exception of \((m,n) = (0,\text{even})\) (Royster remarked that the methods applied in [2] are not sufficient to handle the case \((m,n) = (\text{even,even})\) with \(m,n > 0 \)). If \(m = n = \text{even} \), one knows from [1] that \((M,T)\) is an equivariant boundary when \(\dim(M) \geq 2n \); this case was completed in [3], where it was shown that \((M,T)\) also is a boundary when \(n \leq \dim(M) < 2n \). To understand the case \((m,n) = (0,\text{even})\) and also to explain the goal of this paper, for any \(m \) and \(n \) consider the involution \((\mathbb{RP}^{m+n+1},T_{m,n})\) defined in homogeneous coordinates by

\[T_{m,n}[x_0, x_1, \ldots, x_{m+n+1}] = [-x_0, -x_1, \ldots, -x_m, x_{m+1}, \ldots, x_{m+n+1}] \, . \]

The fixed set of \(T_{m,n} \) is \(\mathbb{RP}^m \cup \mathbb{RP}^n \). From \(T_{m,n} \), it may be possible to obtain other involutions fixing \(\mathbb{RP}^m \cup \mathbb{RP}^n \): in general, for a given involution \((W,T)\)
with fixed set F and with W being a boundary, the involution $\Gamma(W, T) = (S^1 \times W, \tau)$ is equivariantly cobordant to an involution fixing F; here, S^1 is the 1-sphere, Id is the identity map and τ is the involution induced by $c \times Id$, where c is the complex conjugation (see [7]). If $S^1 \times W - Id \times T$ is a boundary, we can repeat the process taking $\Gamma^2(W, T)$, and so on. If F is nonbounding, this process finishes, that is, there exists the first natural number $r \geq 1$ for which the underlying manifold of $\Gamma^r(W, T)$ is nonbounding; this follows from the 5/2-theorem of J. Boardman of [5] and its strengthened version of [1]. In particular, if m and n are even and $m < n$, $RP^m \cup RP^n$ does not bound and RP^{m+n+1} bounds, so this number makes sense for $(RP^{m+n+1}, T_{m, n})$ and we call it $h_{m,n}$.

In [2], Royster proved the following

Theorem. Let (M, T) be an involution fixing $\{\text{point}\} \cup RP^n$, where n is even. Then (M, T) is equivariantly cobordant to $\Gamma^j(RP^{m+1}, T_{0,n})$ for some $0 \leq j \leq h_{0,n}$. Later, in [14], R. E. Stong and P. Pergher determined the value of $h_{0,n}$, thus answering the question posed by Royster in [2; page 271]: writing $n = 2^p q$ with $p \geq 1$ and $q \geq 1$ odd, they showed that $h_{0,n} = 2$ if $p = 1$ and $h_{0,n} = 2^p - 1$ if $p > 1$.

In this paper, we contribute to this problem by solving the case $(m, n) = (2, \text{even})$. Specifically, we will prove the following

Theorem 1. Let (M, T) be an involution fixing $RP^2 \cup RP^n$, where M is connected and $n \geq 4$ is even. Then, if $n > 4$, (M, T) is equivariantly cobordant to $\Gamma^j(RP^{n+3}, T_{2,n})$ for some $0 \leq j \leq h_{2,n}$; if $n = 4$, (M, T) is either equivariantly cobordant to $\Gamma^j(RP^5, T_{2,4})$ for some $0 \leq j \leq h_{2,4}$, or equivariantly cobordant to $\Gamma^2(RP^3, T_{0,2}) \cup (RP^5, T_{0,4})$.

In addition, we generalize the result of Stong and Pergher of [14], calculating the general value of $h_{m,n}$ (which, in particular, makes numerically precise the statement of Theorem 1).

Theorem 2. For m, n even, $0 \leq m < n$, write $n - m = 2^p q$ with $p \geq 1$ and $q \geq 1$ odd. Then $h_{m,n} = 2$ if $p = 1$ and $h_{m,n} = 2^p - 1$ if $p > 1$.

Finally, we also extend the results for Z_k^k-actions. This extension is automatic from the combination of the above results and the case $F = RP^{even}$ with a recent paper [12]. The details concerning this extension will be given in Section 4. Sections 2 and 3 will be devoted, respectively, to the proofs of Theorems 1 and 2.
Acknowledgements. The authors would like to thank Professor Robert E. Stong of the University of Virginia for suggestions and techniques. The first author was partially supported by CNPq and FAPESP, and the second was supported by CAPES.

2 Involution fixing $RP^2 \cup RP^{even}$

We start with an involution (M, T) fixing $RP^2 \cup RP^n$, where M is connected and $n \geq 4$ is even, and first establish some notations. We will always use $\lambda_r \to RP^r$ to denote the canonical line bundle over RP^r. Denote by $\alpha \in H^1(RP^2, Z_2)$ and $\beta \in H^1(RP^n, Z_2)$ the generators of the 1-dimensional Z_2-cohomology. The model involution $(RP^{n+3}, T_{2,n})$ fixes $RP^2 \cup RP^n$ with normal bundles $(n+1)\lambda_2 \to RP^2$ and $3\lambda_n \to RP^n$. The total Stiefel-Whitney classes are $W((n+1)\lambda_2) = (1+\alpha)^{n+1}$, $W(3\lambda_n) = (1+\beta)^3$. Denote by $\eta \to RP^2$ and $\xi \to RP^n$ the normal bundles of RP^2 and RP^n in M. To prove Theorem 1, it suffices to prove the following

Lemma. If $n > 4$, then $W(\eta) = (1+\alpha)^{n+1}$ and $W(\xi) = (1+\beta)^3$; if $n = 4$, then either $W(\eta) = (1+\alpha)^5$ and $W(\xi) = (1+\beta)^3$, or $W(\eta) = 1+\alpha$ and $W(\xi) = 1+\beta$.

In fact, suppose the lemma is true, and denote by R the trivial one-dimensional vector bundle over any base space. Set $k = dim(\eta)$, $l = dim(\xi)$, that is, $k = dim(M) - 2$, $l = dim(M) - n \geq 1$. First consider $n > 4$. For $0 \leq j < h_{2,n}$, the involution $\Gamma^j(RP^{n+3}, T_{2,n})$ is equivariantly cobordant to an involution with fixed data $((n+1)\lambda_2 \oplus jR \to RP^2) \cup (3\lambda_n \oplus jR \to RP^n)$ (see [7]). Using the notations $W = 1+w_1+w_2+\ldots$ for Stiefel-Whitney classes and $\binom{\alpha}{3}$ for binomial coefficients mod 2, note that $w_3(\xi) = \binom{\alpha}{3} \beta^3 = \beta^3 \neq 0$ and thus $l \geq 3$. Then $\eta \cup \xi$ and $((n+1)\lambda_2 \oplus (l-3)R) \cup (3\lambda_n \oplus (l-3)R)$ are cobordant because they have the same characteristic numbers. If $l \leq 3 + h_{2,n}$, one then has from [6] that (M, T) and $\Gamma^{l-3}(RP^{n+3}, T_{2,n})$ are equivariantly cobordant, proving the result. By contradiction, suppose then $l > 3 + h_{2,n}$. Again from [6], $((n+1)\lambda_2 \oplus (l-3)R) \cup (3\lambda_n \oplus (l-3)R)$ is the fixed data of an involution (W, S), and by removing sections if necessary we can suppose, with no loss, that $dim(W) = n + h_{2,n} + 4$ (see [6, Theorem 26.4]). Let $(N, T\iota)$ be an involution cobordant to $\Gamma^{h_{2,n}}(RP^{n+3}, T_{2,n})$ and with fixed data $((n+1)\lambda_2 \oplus h_{2,n}R) \cup (3\lambda_n \oplus h_{2,n}R)$; one knows that N is not a boundary. Then $\Gamma(N, T\iota) \cup (W, S)$ is cobordant to an involution with fixed data $R \to N$, and from [6] $R \to N$ then is a boundary, which is impossible. Now suppose $n = 4$. The case $W(\eta) = (1+\alpha)^5$ and $W(\xi) = (1+\beta)^3$ is included in the above approach, hence suppose $W(\eta) = 1+\alpha$.
and $W(\xi) = 1 + \beta$. Since $h_{0,2} = 2$, the involution $\Gamma^2(RP^3, T_{0,2})$ is cobordant to an involution with fixed data $(5R \to \{\text{point}\}) \cup (\lambda_2 \oplus 2R \to RP^2)$. Then the involution $\Gamma^2(RP^3, T_{0,2}) \cup (RP^5, T_{0,4})$ is cobordant to an involution (W^5, T) with fixed data $(\lambda_2 \oplus 2R \to RP^2) \cup (\lambda_4 \to RP^4)$, and the total Stiefel-Whitney classes are $W(\lambda_2 \oplus 2R) = 1 + \alpha$, $W(\lambda_4) = 1 + \beta$. Because $h_{0,2} = 2$, the underlying manifold of $\Gamma^2(RP^3, T_{0,2})$ does not bound; since RP^5 bounds, W^5 does not bound. By contradiction, suppose $l \geq 2$. Using the hypothesis, [6] and removing sections if necessary, we can suppose with no loss that (M, T) has fixed data $(\lambda_2 \oplus 3R \to RP^2) \cup (\lambda_4 \oplus R \to RP^4)$. Using the same above argument for $\Gamma(W^5, T) \cup (M, T)$, we conclude that $R \to W$ is a boundary, which is false. Then $l = 1$ and (M, T) and (W^5, T) (hence $\Gamma^2(RP^3, T_{0,2}) \cup (RP^5, T_{0,4})$) have fixed data with same characteristic numbers.

In order to prove the lemma, we will intensively use the following basic fact from [6]: the projective space bundles $RP(\eta)$ and $RP(\xi)$, with the standard line bundles $\lambda \to RP(\eta)$ and $\nu \to RP(\xi)$, are cobordant as elements of the bordism group $N_{k+1}(BO(1))$. Then any class of dimension $k + 1$, given by a product of the classes $w_i(RP(\eta))$ and $w_i(\lambda)$, evaluated on the fundamental homology class $[RP(\eta)]$, gives the same characteristic number as the one obtained by the corresponding product of the classes $w_i(RP(\xi))$ and $w_i(\nu)$, evaluated on $[RP(\xi)]$. To evaluate characteristic numbers, the following formula of Conner will be useful (see [9; Lemma 3.1]): if $\pi : \mu \to N$ is any r-dimensional vector bundle, c is the first Stiefel-Whitney class of the standard line bundle over $RP(\mu)$, $W(\mu) = 1 + \pm_1(\mu) + \pm_2(\mu) + ...$ is the dual Stiefel-Whitney class defined by $W(\mu)W(\mu) = 1$ and $\alpha \in H^r(N, Z_2)$, then $c^j\pi^*([RP(\mu)]) = \pm_{j-r+1}(\mu)\alpha[N]$ when $j \geq r - 1$. In this context, our numerical arguments will always be considered modulo 2. Write $W(\lambda) = 1 + c$ and $W(\nu) = 1 + d$ for the Stiefel-Whitney classes of λ and ν. The structure of the Grothendieck ring of orthogonal bundles over real projective spaces says that $W(\eta) = (1 + \alpha)^p$ and $W(\xi) = (1 + \beta)^q$ for some $p, q \geq 0$. From [6, 23.3], one then has

$$W(RP(\eta)) = (1 + \alpha)^3(\sum_{i=0}^{2} (1 + c)^{k-i} {p \choose i} \alpha^i)$$

and

$$W(RP(\xi)) = (1 + \beta)^{n+1}(\sum_{i=0}^{l} (1 + d)^{l-i} {q \choose i} \beta^i),$$

where here we are suppressing bundle maps.

Fact 1. p and q are odd; in particular, $w_1(\eta) = \alpha$ and $w_1(\xi) = \beta$.

4
Proof. One has \(w_1(RP(\eta)) = \binom{k}{1} c + \alpha + \binom{q}{1} \alpha\) and \(w_1(RP(\xi)) = \binom{l}{1} d + \beta + \binom{q}{1} \beta\). Since \(k + 2 = l + n\) and \(n\) is even, \(\binom{k}{1} = \binom{1}{1}\), and thus \(w_1(RP(\eta)) + \binom{q}{1} c = (\binom{q}{1} + 1) \alpha\) and \(w_1(RP(\xi)) + \binom{q}{1} d = (\binom{q}{1} + 1) \beta\) are corresponding characteristic classes. Because \(n > 2\), it follows that

\[
0 = ((\binom{q}{1} + 1) \alpha^n c^{l-1}[RP(\eta)] + ((\binom{q}{1} + 1) \alpha^n d^{l-1}[RP(\xi)] = (\binom{q}{1} + 1) \beta^n [RP^m] = (\binom{q}{1} + 1),
\]

which gives that \(q\) is odd. Also \((\binom{q}{1} + 1) \alpha^2 c^{k-1}[RP(\eta)] = (\binom{q}{1} + 1) \beta^2 d^{k-1}[RP(\xi)] = 0\), and \(p\) is odd.

Fact 2. If \(l = 1\), then \(n = 4\), \(W(\eta) = 1 + \alpha\) and \(W(\xi) = 1 + \beta\).

Proof. Since \(l = 1\) and \(w_1(\xi) = \beta\), \(W(\xi) = 1 + \beta\). Then the involution \((M, T) \cup (RP^{n+1}, T_{0, n})\) is cobordant to an involution with fixed data \((\eta \to RP^2) \cup ((n+1) R \to \{point\})\). From [2] and the fact that \(h_{0, 2} = 2\), \(W(\eta) = 1 + \alpha\) and \(n = 4\).

Fact 2 reduces our lemma to the following assertion: if \(l > 1\), then \(W(\eta) = (1 + \alpha)^{n+1}\) and \(W(\xi) = (1 + \beta)^{l+1}\); so, we assume throughout the remainder of this section that \(l > 1\). Note that \((1 + \alpha)^{n+1} = (1 + \alpha)^3\) if \(\binom{n}{2} = 1\) and \((1 + \alpha)^{n+1} = 1 + \alpha\) if \(\binom{n}{2} = 0\). Denote by \(r\) the greatest power of 2 that appears in the 2-adic expansion of \(n\); that is, \(4 \leq 2^r \leq n < 2^{r+1}\). We can assume \(q < 2^{r+1}\) and \(p < 4\). Then Facts 3 and 4 below show that \(W(\eta) = (1 + \alpha)^{n+1}\):

Fact 3. If \(\binom{n}{2} = 1\), then \(p = 3\).

Fact 4. If \(\binom{n}{2} = 0\), then \(p = 1\).

Set \(p' = 4 - p\), \(q' = 2^{r+1} - q\). Then the dual Stiefel-Whitney classes of \(\eta\) and \(\xi\) are given by \(\tilde{W}(\eta) = (1 + \alpha)^{p'}\), \(\tilde{W}(\xi) = (1 + \beta)^{q'}\). Since \(p\) and \(q\) are odd, \(p'\) and \(q'\) are odd; further, \(\binom{p}{2} + \binom{p'}{2} = 1\) and \(\binom{q}{2} + \binom{q'}{2} = 1\) for each \(1 \leq u \leq r\). Now we prove Fact 3. We will use several times the fact that a binomial coefficient \(\binom{a}{b}\) is nonzero modulo 2 if and only if the 2-adic expansion of \(b\) is a subset of the 2-adic expansion of \(a\). We have \(n = 4j + 2\), with \(j \geq 1\), and want to show that \(p = 3\); since \(p < 4\) is odd, it suffices to show that \(\binom{n}{2} = 1\), or equivalently that \(\binom{p'}{2} = 0\). Suppose by contradiction that \(\binom{p'}{2} = 1\). By Conner’s formula, \(c^{k+1}[RP(\eta)] = \binom{k}{2} \alpha^2 [RP^2] = \binom{p'}{2} = d^{k+1}[RP(\xi)] = \binom{q'}{2}\). Then \(\binom{q'}{2} = 1\) and consequently \(\binom{q}{2} = 1\). We formally introduce the class (with \(l - 1 \geq 1\))

\[
\tilde{W}(RP(\xi)) = \frac{W(RP(\xi))}{(1 + c)^{l-1}}.
\]
Since $k = l + 4j$ and p and q are odd, on RP^2 this class is

$$
\widetilde{W}(RP(\eta)) = (1 + \alpha)^3(1 + c^4)^j(1 + c + \alpha + (1 + c)^{-1}(p)\alpha^2),
$$

and on RP^n it is

$$
\widetilde{W}(RP(\xi)) = (1 + \beta)^{4j+3}(1 + d + \beta + (1 + d)^{-1}(q)\beta^2 + (1 + d)^{-2}(q/3)\beta^3 + ...).
$$

Then $\tilde{w}_3(RP(\eta)) = \alpha^2 c + (\eta/2)\alpha^2 c = (\eta/2)\alpha^2 c = \alpha^2 c$, and since $(\eta/2) + (\eta/2) = 0$ because q is odd, $\tilde{w}_3(RP(\xi)) = (\eta/2)\beta^2 d = \beta^2 d$. Now we observe that, if a and b are one-dimensional cohomology classes, then by the Cartan formula one has $Sq^{2^n}(a^{2^n} b) = a^{2^n+1} b$, where Sq is the Steenrod operation and $u \geq 1$. Also one has, by the Wu and Cartan formulae, that Sq^j evaluated on a product of characteristic classes gives a polynomial in the characteristic classes. Then

$$
Sq^{2^r-1}(...(Sq^4(Sq^2(\alpha^2 c)))...) = \alpha^2 r c \quad \text{and} \quad Sq^{2^r-1}(...(Sq^4(Sq^2(\beta^2 d)))...) = \beta^2 r d
$$

are corresponding classes on RP^2 and RP^n. Using the Conner formula and the fact that $2^r \geq 4$, one then has

$$
0 = (\alpha^2 r c) c^{4j+1-2^r+l-1}[RP(\eta)] = (\beta^2 r d) d^{4j+1-2^r+l-1}[RP(\xi)] = \left(4j + 2 - 2^r\right).
$$

Since $(\eta/2)^j = 1$ and 2^r belongs to the 2-adic expansion of $4j + 2$, also $(\eta/2)^{j+2} = 1$, which is impossible. Hence Fact 3 is proved. To prove Fact 4, we can consider $n = 4j$ with $j \geq 1$; in this case, to show that $p = 1$, it suffices to show that $(\eta/2) = 1$, and again by contradiction we suppose $(\eta/2) = 0$. Then $(\eta/2)^j = 1$ and $k = l + 4j - 2$ gives

$$
\widetilde{W}(RP(\eta)) = (1 + \alpha)^3(1 + c)^{4j-1} + (1 + c)^{4j-2}\alpha + (1 + c)^{4j-3}\alpha^2)
$$

and $\tilde{w}_2(RP(\eta)) = c^2 + \alpha^2 + c\alpha$. Also

$$
\widetilde{W}(RP(\xi)) = (1 + \beta)^{4j+1}(1 + d + \beta + (1 + d)^{-1}(q/2)\beta^2 + (1 + d)^{-2}(q/3)\beta^3 + ...)
$$

and $\tilde{w}_2(RP(\xi)) = (\eta/2)^2 + \beta d + \beta^2$. Let 2^t be the lesser power of 2 of the 2-adic expansion of $n = 4j$ ($2^t \geq 4$). For $t \leq x \leq r$ and with the same preceding
tools, we then get

\[S q^{2^{j+1}} \cdots (S q^4 (S q^2 (w_2 (RP(\eta))) \cdots) c^{4j+1-2^r-2} [RP(\eta)] = \]

\[(c^{2^r} + \alpha c + c^{2^r} \alpha) \cdots c^{4j+1-2^r-2} [RP(\eta)] = \binom{q}{2} \}

\[S q^{2^{j+1}} \cdots (S q^4 (S q^2 (w_2 (RP(\xi))) \cdots) d^{4j+1-2^r-2} [RP(\xi)] = \]

\[(\binom{q}{2}) \beta^{2^r} d + \beta d^{2^r} + \beta^{2^r} d) d^{4j+1-2^r-2} [RP(\xi)] = \]

\[(\binom{q}{2}) (q^{j-2r}) + (q^{j-1}) + (q^{j-2}) = (q^j) (q^{j-2r}) + (q^{j-1}) \]

\[0 = \binom{q}{2} = c^{k+1} [RP(\eta)] = d^{k+1} [RP(\xi)] = \binom{q}{2} \]

\[\tilde{w}_2 (RP(\eta)) \beta^{2^r+1-3} [RP(\eta)] = \binom{q}{2} + 1 \]

\[\tilde{w}_2 (RP(\xi)) d^{2^r+1-3} [RP(\xi)] = \binom{q}{2} (q^{j-2r}) + (q^{j-1}) + (q^{j-2}) = (q^j) (q^{j-2r}) + (q^{j-1}) \]

That is, we get the equations: i) 0 = \binom{q}{2}, ii) 0 = \binom{q}{2} (q^{j-2r}) + (q^{j-1}) and iii) 1 = \binom{q}{2} (q^{j-2r}) + (q^{j-1}). By using equations ii) and iii), we conclude that \((\binom{q}{2}) = 1 \) and \((q^{j-2r}) \neq (q^{j-1}) \). Suppose \(t < r \). If \((q^{j-2r}) = 1 \), equation i) and the fact that \(2^r \) belongs to the 2-adic expansion of \(4j \) imply that \(2^r \) is the only power of 2 of the 2-adic expansion of \(4j \) that does not belong to the 2-adic expansion of \(q \). Hence \((q^{j-2r}) = 0 \), which is a contradiction. Then \((q^{j-2r}) = (q^{j-2r}) = 0 \). In this case, equation i) and \((q^{j-2r}) = 1 \) give that \(2^r \) is the only power of 2 of the 2-adic expansion of \(4j \) that does not belong to the 2-adic expansion of \(q \), which gives the contradiction \((q^{j-2r}) = 1 \). Now suppose \(t = r \), that is, \(n = 4j + 2^r \). One has

\[\tilde{w}_2 (RP(\eta)) c^{2^r+1-5} [RP(\eta)] = (q^j) + 1 = (\tilde{w}_2 (RP(\xi)) c^{2^r+1-5} [RP(\xi)] = \]

\[(q^j) (q^{j-2r}) + (q^{j-4}) + (q^{j-2}) = (q^j) (q^{j-2r}) + (q^{j-4}) + (q^{j-2}) \]

Since \((q^j) = 1 \), \((q^{j-4}) = (q^{j-2}) \), which gives a contradiction. Thus Fact 4 is proved.

Now we prove that \(q = 3 \). To do this, first we prove

Fact 5. \(\binom{q}{2} = 1 \); in particular, \(q \geq 3 \).

Proof. As before, first consider \(n = 4j + 2 \), with \(j \geq 1 \). In this case, we know that \(0 = \binom{q}{2} = (q^{j+2}) \), \(\tilde{w}_2 (RP(\eta)) = \binom{q}{2} \alpha^2 + \alpha c = \alpha^2 + \alpha c \) and \(\tilde{w}_2 (RP(\xi)) = \binom{q}{2} \beta^2 + \beta d \). Then

\[(\tilde{w}_2 (RP(\eta))) c^{2^r+1-3} [RP(\eta)] = 1 = (\tilde{w}_2 (RP(\xi)) c^{2^r+1-3} [RP(\xi)] = \]

\[(q^j) (q^{j-2r}) + (q^{j-1}) \]

Since \((q^j) = (q^{j-2r}) = 1 \) and 2 belongs to the 2-adic expansion of \(4j - 2 \), one has that \((q^j) (q^{j-2r}) = 0 \), and thus \((q^{j-2r}) = 1 \). Now \((q^{j+2}) = 0 \) and \((q^{j-1}) = 1 \) imply that \((q^{j-2r}) = 0 \), and thus \((q^j) = 1 \). Since \(q \) is odd, this means that \(q \geq 3 \).
Now suppose \(n = 4j \), with \(j \geq 1 \). In this case, one has \(\binom{q}{2} = 1 \), \(\bar{w}_3(RP(\eta)) = c^3 + \binom{q}{2} \alpha^2c = c^3 + \alpha^2c \) and \(\bar{w}_3(RP(\xi)) = \binom{q}{2} \beta^2d \). Then

\[
S q^{2r-1}(... (S q^4 (S q^2 (w_3 (RP(\eta))))...)c^{4j+l-2r-2}[RP(\eta)] = \\
(2^c c + \alpha^2c) c^{4j+l-2r-2}[RP(\eta)] = \binom{q}{2} = 1 = \\
S q^{2r-1}(... (S q^4 (S q^2 ((\binom{q}{2} \beta^2d))))...)d^{4j+l-2r-2}[RP(\xi)] = \\
((\binom{q}{2} \beta^2d)d^{4j+l-2r-2}[RP(\xi)] = \binom{q}{2}\binom{q}{2}(4j-2r).
\]

Thus \(\binom{q}{2} = 1 \), and Fact 5 is proved.

To end our task, we will show that \(q \leq 3 \). The strategy will consist in finding nonzero characteristic numbers coming from characteristic classes involving \(\alpha^{q-1} \). To do this, we need the following

Fact 6. \(n + l - 1 > 2(q - 1) \).

Proof. First suppose \(n = 4j + 2 \), \(j \geq 1 \). From the proof of Fact 5, \(\binom{q}{2} = 1 \), and thus \(\binom{q}{2} = 1 \) and \(\binom{q}{2} = 0 \). Since \(q < 2r+1 \), \(q < 2r < 4j+2 \). In particular, \(w_q(\xi) = \alpha^q \neq 0 \) and \(q \leq l \). Then \(n + l - 1 = 4j + 2 + l - 1 > 2q - 1 > 2(q - 1) \).

Now suppose \(n = 4j \), \(j \geq 1 \). In this case, \(\binom{q}{2} = 1 = \binom{q}{2} \), so the argument is the same.

Fact 6 says that we can consider characteristic numbers coming from classes involving \(\bar{w}_2^{-1} \); in this direction, first consider \(n = 4j + 2 \), \(j \geq 1 \). In this case, \(\bar{w}_2(RP(\eta)) = \binom{q}{2} \alpha^2 + \alpha c = \alpha(\alpha + c) \) and \(\bar{w}_2(RP(\xi)) = \binom{q}{2} \beta^2 + \beta d = \beta(\beta + d) \). Thus

\[
(\alpha^{q-1}(\alpha + c)^{q-1}c^{4j+l-2q+3})[RP(\eta)] = \binom{q}{2}(\beta^{q-1}(\beta + d)^{q-1}d^{4j+l-2q+3})[RP(\xi)].
\]

By Conner’s formula, the last term is the coefficient of \(\beta^{4j+2} \) in \(\beta^{q-1}(1 + \beta)^{q-1}(1 + \beta)^{q-1} \). If \(n = 4j \), \(j \geq 1 \), similarly one has \(\bar{w}_2(RP(\eta)) + c^2 = (c^2 + \binom{q}{2} \alpha^2 + \alpha c) + c^2 = \alpha c, \bar{w}_2(RP(\xi)) + d^2 = \binom{q}{2}\beta^2 + \beta d + d^2 = (\beta + d)d, \)

\[
\left((\alpha^{q-1}\alpha^{q-1})\beta^{4j+l-2q+1}\right)[RP(\eta)] = \left(\beta + d\right)d^{q-1}d^{4j+l-2q+1}[RP(\xi)],
\]

and the last term is the coefficient of \(\beta^{4j} \) in \((1 + \beta)^{q-1}(1 + \beta)^{q-1} \). Since \((1 + \beta)^{q-1} \), these numbers have value 1, which means that \(\alpha^{q-1} \neq 0 \) and \(q - 1 \leq 2 \), thus ending the proof.

3 Calculation of \(h_{m,n} \)

Denote by \(W_r \) the underlying manifold of \(\Gamma^r(\mathcal{P}^{m+n+1}, T_{m,n}) \), and by \(\mathcal{P}_r \) the total space of the iterated fibration

\[
RP((m + 1)\mu_r \oplus (n + 1)R) \rightarrow RP(\lambda_1 \oplus (r - 1)R) \rightarrow RP^1,
\]

8
where μ_r is the standard line bundle over $RP(\lambda_1 \oplus (r - 1)R)$.

Lemma \mathcal{W}_r is cobordant to \mathcal{P}_r.

Proof. If (W, T) is a free involution and $\lambda \to W/T$ is the usual line bundle, the sphere bundle $S(\lambda \oplus R)$ with the antipodal involution in the fibers can be identified to the free involution $(\frac{W \times S^1}{T} \times c, \tau)$, where c is the complex conjugation and τ is induced by $Id \times -Id$. Starting with $(S^1, -Id)$ and by iteratively applying this fact, we can see that \mathcal{W}_r is diffeomorphic to the total space of the iterated fibration $RP((m + 1)\xi_r \oplus (n + 1)R) \to RP(\xi_{r-1} \oplus R) \to \ldots \to RP(\xi_2 \oplus R) \to RP(\xi_1 \oplus R) \to RP^1$; here, $\xi_1 = \lambda_1$ and ξ_i is the standard line bundle over $RP(\xi_{i-1} \oplus R)$, for each $i > 1$. From [6], one knows that $\mathcal{N}_r(BO(1))$ is a free \mathcal{N}_r-module, where \mathcal{N}_r is the unoriented cobordism ring, with one generator X_j in each dimension $j \geq 0$; these generators are characterized by the fact that $c^j[V^j] = 1$, where $\lambda \to V^j$ is a representative of X_j and c is the first Whitney class of λ. Further, it was shown in [8, Theorem 24.5] that there is a unique basis $\{X_j\}_{j=0}^\infty$ for $\mathcal{N}_r(BO(1))$ which satisfies: i) $\triangle(X_j) = X_{j-1}$, $j \geq 1$, where $\triangle: \mathcal{N}_r(BO(1)) \to \mathcal{N}_{r-1}(BO(1))$ is the Smith homomorphism; ii) if $\lambda \to V^j$ is a representative of X_j for $j \geq 1$, then V^j bounds. Also it was shown in [8, Theorem 24.5] that $X_1 = [\xi_1 \to RP^1]$ and $X_j = [\xi_j \to RP(\xi_{j-1} \oplus R)]$ for $j \geq 2$. For $j \geq 1$, set $Y_j = [\mu_j \to RP(\lambda_1 \oplus (j-1)R)]$. One has $c^j[RP(\lambda_1 \oplus (j-1)R)] = w(T)(\lambda_1)[S^1] = 1$, $Y_1 = X_1$ and $\triangle([\mu_j \to RP(\lambda_1 \oplus (j-1)R)]) = [\mu_{j-1} \to RP(\lambda_1 \oplus (j-2)R)]$ for $j \geq 2$; further, every projective space bundle over S^1 bounds (see [7, Lemma 2.2]). By the uniqueness, $Y_j = X_j$ for $j \geq 1$, and the result follows. □

With the above lemma in hand, Theorem 2 can now be paraphrased as

Theorem 2. For m, n even, $0 \leq m < n$, write $n = m = 2^p q$ with $p \geq 1$ and $q \geq 1$ odd. Then,

a) if $p = 1$, \mathcal{P}_1 bounds and \mathcal{P}_2 does not bound;

b) if $p > 1$, \mathcal{P}_r bounds for each $1 \leq r \leq 2^p - 2$ and $\mathcal{P}_{2^p - 1}$ does not bound.

Denote by $\alpha \in H^1(RP^1, Z_2)$ the generator and by $\theta_r \to \mathcal{P}_r$ the standard line bundle; set $W(\mu_r) = 1 + c$ and $W(\theta_r) = 1 + d$. The following lemma, which follows from Conner’s formula, will be useful in our computations:

Lemma. i) For $f + g + h = m + n + 1 + r$, $c^f(c + d)^g d^h [\mathcal{P}_r]$ is the coefficient of c^r in $\frac{c^f(1 + c)^g}{(1 + c)^{m+1}}$. 9
ii) For \(f + g + h = m + n + r \), \(\alpha c^j (c + d)^{g} d^{h} [P_r] \) is the coefficient of \(c^r \) in \(c^{f+1}(1+c)^{g} \over (1+c)^{m+1} \).

If \(M \) is a closed manifold and \((1 + t_1)(1 + t_2)\ldots(1 + t_i)\) is the factored form of \(W(M) \), one has the \(s \)-class \(s_j \) given by the polynomial in the classes of \(M \)
corresponding to the symmetric function
\[
\frac{1}{1 + t_1 + t_2 + \ldots + t_i}.
\]

Since
\[
W(P_r) = (1 + c + \alpha)(1 + c)^{r-1}(1 + c + d)^{m+1}(1 + d)^{n+1},
\]
c\(^i \) = 0 if \(i > r \) and \(\alpha^i = 0 \) if \(i > 1 \), the \(s \)-class \(s_{m+n+1+r} \) of \(P_r \) then is
\[
s_{m+n+1+r} = (c + \alpha)^{m+n+1+r} + (r - 1)c^{m+n+1+r} + (m + 1)(c + d)^{m+n+1+r} + \]
\[
(n + 1)d^{m+n+1+r} = (c + d)^{m+n+1+r} + d^{m+n+1+r}.
\]

Using part i) of the above lemma and the fact that
\[
\frac{1}{1 + (1+c)^{m+1}} = 1 + \sum_{i=1}^{r} \binom{m+i}{i} c^i
\]
in \(H^*(P_r, \mathbb{Z}_2) \), one then has
\[
s_{m+n+1+r} [P_r] = \text{coefficient of } c^r \text{ in } (1+c)^{n+r} + \text{coefficient of } c^r \text{ in } \left(\frac{1}{1 + (1+c)^{m+1}} \right).
\]

Because \(n = 2^p q + m \) and \(q \) is odd, one then gets
\[
s_{m+n+1+2^p} [P_{2^p}] = \left(\binom{n+2^p}{2^p} \right) + \left(\binom{m+2^p}{2^p} \right) = 1.
\]

It follows that \(P_{2^p} \) does not bound; because \(P_1 \) is a projective space bundle over \(S^1 \) and hence a boundary, this in particular proves part a) of Theorem 2.

So we can assume from now that \(p > 1 \) and \(r < 2^p \). Using again \(n = 2^p q + m \), we rewrite \(W(P_r) \) as
\[
W(P_r) = (1 + c + \alpha)(1 + c)^{r-1}(1 + c + d(c + d))^{m+1}(1 + d^{2^p})^g.
\]

Then a general characteristic number of \(P_r \) is a sum of terms of the form \(\alpha^e c^j (d(c + d))^{g} d^{2^p h} [P_r] \), where \(e + f + 2g + 2^ph = m + n + 1 + r \) and either \(e = 0 \) or \(e = 1 \). Since by the above lemma \(\alpha^e c^j (d(c + d))^{g} d^{2^p h} [P_r] = c^{f+1}(d(c + d))^{g} d^{2^p h} [P_r] \), we can assume \(e = 0 \). Thus, to prove the first statement of part b) of Theorem 2, it suffices to show that \(c^j (d(c + d))^{g} d^{2^p h} [P_r] = 0 \) when \(f + 2g + 2^ph = m + n + 1 + r \) and \(r < 2^p - 1 \). Since \(c^j = 0 \) if \(f > r \), we assume
\(f \leq r \) and thus \(0 \leq r - f < 2^p - 1 \). Take \(s > p \) with \(2^s > m + 1 \); in particular, \(2^s > 2^p > r \) and \(\frac{1}{(1 + c)^{m+1}} = (1 + c)^{2^s-m-1} \). Then

\[
c^f (d(c + d))^g d^{2p} h [P_r] = \text{coefficient of } c^r \text{ in } \frac{c^f (1 + c)^g}{(1 + c)^{m+1}} = \text{coefficient of } c^r \text{ in } c^f (1 + c)^g (1 + c)^{2^s - m - 1} = (2^s + g - m - 1 - \frac{r - f + 1}{2} - 1).
\]

Write \(r - f + 1 = 2^t a \), where \(a \) is odd. Since \(r - f + 1 = 2g + 2ph - m - n \) is even and \(r - f + 1 < 2^p \), one has \(1 \leq t \leq p - 1 \). Then \(2^t - 1 \) belongs to the \(2 \)-adic expansion of \(r - f \) and does not belong to the \(2 \)-adic expansion of \(2^{p-1}(2^s-p+1+q-h)+\frac{r-f+1}{2} - 1 \), which means, as required, that the above number is zero.

Finally, we must to show that \(P_{2^p-1} \) does not bound. One has \(w_2(P_{2^p-1}) = \alpha + (m + 2^p + d(c + d)) \). We have seen above that \(c^f (d(c + d))^g d^{2p} h [P_r] = 0 \) for \(f + 2g + 2ph = m + n + 1 + r \) and \(0 \leq r - f < 2^p - 1 \); in particular, this is true for \(r = 2^p - 1 \) and \(f > 0 \). In this way,

\[
w_2(P_{2^p-1}) = \frac{m + n + 2^p}{2} - \frac{m + n + 2^p}{2} = 0.
\]

Then

\[
\text{coefficient of } c^{2^p-1} \text{ in } \frac{(1 + c)^{m+1}}{(1 + c)^m + 2^p - 1} = (2^{p-1}q + 2^{p-1} - 1) = 1,
\]

and \(P_{2^p-1} \) does not bound.

4 \(\mathbb{Z}_2^k \)-actions fixing \(RP^2 \cup RP^{even} \)

Let \(F^n \) be a connected, smooth and closed \(n \)-dimensional manifold satisfying the following property, which we call property \(\mathcal{H} \) : if \(N^m \) is any smooth and closed \(m \)-dimensional manifold with \(m > n \) and \(T : N^m \to N^m \) is a smooth involution whose fixed point set is \(F^n \), then \(m = 2n \). From [1], this implies that \((N^m, T) \) is cobordant to the \textit{twist involution} \((F^n \times F^n, t) \), given by \(t(x, y) = (y, x) \). This concept was introduced and studied in [13], and it was inspired
in [6; 27.6] (or [8; 29.2]), where it was shown that R^{even} has this property. In [12], we studied the equivariant cobordism classification of smooth actions $(M; \Phi)$ of the group Z_2^k on closed and smooth manifolds M for which the fixed point set F of the action is the union $F = K \cup L$, where K and L are submanifolds of M with property \mathcal{H} and with $\dim(K) < \dim(L)$. We showed that, for this F, the Z_2^k-classification is completely determined by the corresponding Z_2-classification. Specifically, the equivariant cobordism classes of Z_2^k-actions fixing $K \cup L$ can be represented by a special set of Z_2^k-actions which are explicitly obtained from involutions fixing $K \cup L$, K and L. Together with the results of Sections 2 and 3 and the case $F = R^{\text{even}}$, this gives a precise cobordism description of the Z_2^k-actions fixing $RP^2 \cup RP^n$, where $n > 2$ is even; next we give this description. Here, Z_2^k is considered as the group generated by k commuting involutions $T_1, T_2, ..., T_k$. The fixed data of a Z_2^k-action $(M; \Phi)$, $\Phi = (T_1, T_2, ..., T_k)$, is $\eta = \bigoplus_{\rho} \varepsilon_{\rho} \to F$, where $F = \{x \in M / T_i(x) = x \text{ for all } 1 \leq i \leq k\}$ is the fixed point set of Φ and $\eta = \bigoplus_{\rho} \varepsilon_{\rho}$ is the normal bundle of F in M, decomposed into eigenbundles ε_{ρ} with ρ running through the $2k - 1$ nontrivial irreducible representations of Z_2^k. A collection of Z_2^k-actions fixing F can be obtained from an involution fixing F through the following procedure: let (W, T) be any involution. For each r with $1 \leq r < k$, consider the Z_2^k-action $\Gamma^r_k(W, T)$, defined on the cartesian product $W^{2r - 1} = W \times \cdots \times W$ (2^{r-1} factors), and described in the following inductive way: first set $\Gamma^1_k(W, T) = (W, T)$. Taking $k \geq 1$ and supposing by inductive hypothesis one has constructed $\Gamma^{k-1}_{k-1}(W, T)$, define $\Gamma^k_k(W, T) = (W^{2k-1}; T_1, T_2, ..., T_k)$, where $(W^{2k-1}; T_1, T_2, ..., T_{k-1}) = (W^{2k-2} \times W^{2k-2}; T_1, T_2, ..., T_{k-1}) = \Gamma^{k-1}_{k-1}(W, T) \times \Gamma^{k-1}_{k-1}(W, T)$ and T_k acts switching $W^{2k-2} \times W^{2k-2}$. This defines $\Gamma^k_r(W, T)$ for any $k \geq 1$. Next, define $\Gamma^k_k(W, T) = (W^{2r-1}; T_1, T_2, ..., T_k)$ setting $(W^{2r-1}; T_1, T_2, ..., T_{k}) = \Gamma^r_k(W, T)$ and letting $T_{r+1}, ..., T_k$ act trivially. If (W, T) fixes F and if $\eta \to F$ is the normal bundle of F in W, then $\Gamma^k_r(W, T)$ fixes F and its fixed data consists of $2r-1$ copies of η, $2^{r-1} - 1$ copies of the tangent bundle of F and $2^k - 2r$ copies of the zero-dimensional bundle over F. In particular, for the twist involution $(F \times F, t)$, $\Gamma^k_k(F \times F, t) = (F^{2r}; T_1, T_2, ..., T_k)$, where $(T_1, T_2, ..., T_r)$ is the usual twist Z_2^r-action on F^{2r} which interchanges factors and $T_{r+1}, ..., T_k$ act trivially, with the fixed data having in this case $2r - 1$ copies of the tangent bundle of F and $2^k - 2r$ zero bundles. In this special case, we allow r to be zero, setting $\Gamma^k_0(F \times F, t) = (F; T_1, T_2, ..., T_k)$, where each T_i is the identity involution.

Now, from a given Z_2^k-action $(M; \Phi)$, $\Phi = (T_1, ..., T_k)$, we can obtain a collection of new Z_2^k-actions, described as follows: first, each automorphism $\sigma : Z_2^k \to Z_2^k$ yields a new action given by $(M; \sigma(T_1), ..., \sigma(T_k))$; we denote this
action by $\sigma(M; \Phi)$. The fixed data of $\sigma(M; \Phi)$ is obtained from the fixed data of $(M; \Phi)$ by a permutation of eigenbundles, obviously depending on σ. Next, it was shown in [11] that if $(M; \Phi)$ has fixed data $\bigoplus_\rho \varepsilon_\rho \to F$ and one of the eigenbundles ε_θ is isomorphic to $\varepsilon_\theta' \oplus R$, then there is an action $(N; \Psi)$ with fixed data $\bigoplus_\rho \mu_\rho \to F$, where $\mu_\rho = \varepsilon_\rho$ if $\rho \neq \theta$ and $\mu_\theta = \varepsilon_\theta'$. We say in this case that $(N; \Psi)$ is obtained from $(M; \Phi)$ by removing one section. Thus, the iterative process of removing sections may possibly enlarge the set \{\sigma(M; \Phi), \sigma \in \text{Aut}(Z^k_2)\}. Summarizing, from a given involution $(W; T)$ that fixes F, we obtain a collection of Z^k_2-actions fixing F by applying the operations $\sigma \Gamma^k_r$ on $(W; T)$ and next by removing the (possible) sections from the resultant eigenbundles. The results of [12] say that when $F = K \cup L$, where K and L have property \mathcal{H} and $\dim(K) < \dim(L)$, then, up to equivariant cobordism, all Z^k_2-actions fixing F are obtained, with the above procedure, from involutions fixing $K \cup L$, K and L. Together with the Z_2-classification obtained in Sections 2 and 3 and the case $F = \mathbb{R}^2 \cup \mathbb{R}^n$, we obtain a collection of Z^k_2-actions fixing F, where $\sigma \in \text{Aut}(Z^k_2)$.

Theorem. Let $(M; \Phi)$ be a Z^k_2-action fixing $\mathbb{R}^2 \cup \mathbb{R}^n$, where $n > 2$ is even. Then $(M; \Phi)$ is equivariantly cobordant to an action belonging to the set $A \cup B$, where the sets A and B are described below in terms of n:

i) $n - 2 = 2^p q$, with q odd and $p > 1$: $A = \emptyset = \text{the empty set}; B = \text{the set obtained from } \{\sigma \Gamma^k_r \Gamma^{2p-1}(\mathbb{R}^{n+3}, T_{2,n}), \sigma \in \text{Aut}(Z^k_2), 1 \leq r \leq k\}$ by removing sections.

ii) $n - 2 = 2q$, with q odd, and n is not a power of 2: $A = \emptyset; B = \text{the set obtained from } \{\sigma \Gamma^k_r \Gamma^2(\mathbb{R}^{n+3}, T_{2,n}), \sigma \in \text{Aut}(Z^k_2), 1 \leq r \leq k\}$ by removing sections;

iii) $n = 2^t$ is a power of 2 with $t \geq 3$: $A = \{\sigma \Gamma^k_r(\mathbb{R}^2 \times \mathbb{R}^2, \text{twist}) \cup \sigma' \Gamma^k_{r-1}(\mathbb{R}^2 \times \mathbb{R}^2, \text{twist}), \sigma, \sigma' \in \text{Aut}(Z^k_2), t - 1 \leq r \leq k\}; B = \text{the set obtained from } \{\sigma \Gamma^k_r \Gamma^2(\mathbb{R}^{2^t+3}, T_{2,2^t}), \sigma \in \text{Aut}(Z^k_2), 1 \leq r \leq k\}$ by removing sections (by dimensional reasons, in this case $A = \emptyset$ if $t - 1 > k$);

iv) $n = 4$: $A = \{\sigma \Gamma^k_{r+1}(\mathbb{R}^2 \times \mathbb{R}^2, \text{twist}) \cup \sigma' \Gamma^k_r(\mathbb{R}^4 \times \mathbb{R}^4, \text{twist}), \sigma, \sigma' \in \text{Aut}(Z^k_2), 0 \leq r \leq k - 1\} \cup \{\sigma \Gamma^k_r(W^3, T), \sigma \in \text{Aut}(Z^k_2), 1 \leq r \leq k\}$, where $(W^5, T) = \Gamma^2(R^3, T_{0,2}) \cup (\mathbb{R}^5, T_{0,4}); B = \text{the set obtained from } \{\sigma \Gamma^k_r \Gamma^2(\mathbb{R}^7, T_{2,4}), \sigma \in \text{Aut}(Z^k_2), 1 \leq r \leq k\}$ by removing sections.
References

Pedro L. Q. Pergher
Departamento de Matemática
Universidade Federal de São Carlos
Caixa Postal 676
São Carlos, SP 13565-905, Brazil
E-mail: pergher@dm.ufscar.br

Adriana Ramos
Departamento de Matemática
Universidade Federal de São Carlos
Caixa Postal 676
São Carlos, SP 13565-905, Brazil
E-mail: aramos@dm.ufscar.br

Rogério de Oliveira
Departamento de Ciências Exatas
Universidade Federal de Mato Grosso do Sul
Caixa Postal 210
Três Lagoas, MS 79603-011, Brazil
E-mail: rogerio@ceul.ufms.br