Global Solvability for First Order Real Linear Partial Differential Operators

José R. dos Santos Filhoa,1, Maurício Fronza da Silvab,2

aDepartamento de Matemática, Universidade Federal de São Carlos, SP, Brazil
bDepartamento de Matemática, Universidade Federal de Santa Maria, RS, Brazil

Abstract

F. Treves, in [17], using a notion of convexity of sets with respect to operators due to B. Malgrange and a theorem of C. Harvey, characterized globally solvable linear partial differential operators on $C^\infty(X)$, for an open subset X of \mathbb{R}^n.

Let $P = L + c$ be a linear partial differential operator with real coefficients on a C^∞ manifold X, where L is a vector field and c is a function. If L has no critical points, J. Duistermaat and L. Hörmander, in [2], proved five equivalent conditions for global solvability of P on $C^\infty(X)$.

Based on Harvey-Treves’s result we prove sufficient conditions for the global solvability of P on $C^\infty(X)$, in the spirit of geometrical Duistermaat-Hörmander’s characterizations, when L is zero at precisely one point. For this case, additional non-resonance type conditions on the value of c at the equilibrium point are necessary.

\textit{Key words:} First Order Partial Differential Operators, Global Solvability.

\textit{2000 MSC:} 35A05, 35F05

1. Introduction

Let X be a C^∞ manifold Hausdorff with a countable basis of open sets and $P : C^\infty(X) \to C^\infty(X)$ a linear partial differential operator. P is said to be \textbf{globally solvable}, or \textbf{solvable}, on $C^\infty(X)$ when $P(C^\infty(X)) = C^\infty(X)$.
B. Malgrange ([9] p. 295) in 1955 introduced the notion of P–convexity and showed it to be equivalent to the global solvability of P on $C^\infty (X)$, when P has constant coefficients and X is an open subset of \mathbb{R}^n. When P has variable coefficients, he showed that P–convexity is a necessary condition for the global solvability of P on $C^\infty (X)$.

Let X be an n–dimensional C^∞ manifold Hausdorff space with countable basis. Take \mathcal{F} to be a local coordinate system (X_κ, κ) for X. The space of distributions $\mathcal{D}'(X)$ is defined in the following way (see [7], p. 144), for every κ consider a distribution $u_\kappa \in \mathcal{D}'(\kappa (X_\kappa))$ such that

$$u_\kappa' = u_\kappa \circ (\kappa \circ \kappa'^{-1}) \text{ in } \kappa' (X_\kappa \cap X_{\kappa'}) ,$$

in this case, (u_κ) is called a distribution on X. The set of all distributions in X is denoted by $\mathcal{D}'(X)$. Similarly we define the space of compact support distribution $\mathcal{E}'(X)$.

Denote $M \subset \subset X$ if M is a compact subset of X and tP the formal transpose of P. In this article supp (u) denotes the support and $\text{singsupp} (u)$ denotes the singular support of the distribution u. We say that X is P–convex for supports if $\forall K \subset \subset X, \exists K' \subset \subset X$ such that

$$u \in \mathcal{D}'(X), \text{ supp } (^tPu) \subset K \Rightarrow \text{ supp } (u) \subset K'.$$

In a similar way we define the P–convexity for singular supports.

In 1967, F. Treves ([17] p. 60) and C. Harvey ([5] p. 700) using the P–convexity for supports, gave a general characterization of globally solvable linear partial differential operators on $C^\infty (X)$.

Unless otherwise mentioned, from now on $P = L + c$ will be a linear partial differential operator with real coefficients in $C^\infty (X)$, where L is a vector field and c is a function. In 1972, when L has no critical points, J. Duistermaat and L. Hörmander (see [2] p. 212) gave five equivalent conditions for global solvability of P on $C^\infty (X)$. They used the notions of global transversal of L on X and of convexity of X with respect to the trajectories of L. In [6], J. Hounie extended one of these characterizations for L complex.

In order to state our main theorem we recall some definitions and results. We say that X is convex with respect to the trajectories of L if $\forall K \subset \subset X, \exists K' \subset \subset X$ such that any compact interval of trajectory of L with endpoints in K, is contained in K' (see [2], p. 208).

If L has a critical point at the origin and $c \in \mathbb{C}$, V. Guillemin and D. Schaeffer ([3] p. 175) gave, in 1977, sufficient conditions for the equation $Pu = f$ to
have a C^∞ solution in a neighborhood of zero, for an arbitrary $f \in C^\infty(\mathbb{R}^n)$ flat at the origin. We remark that in [3] and [11] results on propagation of singularities for operators of type $P = L + c$ are presented.

Suppose that x_0 is a critical point of L. Let $\lambda_1, \lambda_2, ..., \lambda_{n'}, \lambda_{n'+1}, ..., \lambda_n$ be the eigenvalues of $DL(x_0)$, where $\lambda_1, \lambda_2, ..., \lambda_{n'}$ are the real eigenvalues and $\lambda_{n'+1}, ..., \lambda_n$ are non-real eigenvalues. For $c = 0$, from S. Sternberg ([15] p. 629), see also E. Nelson ([10] p. 50) and V. Guillemin and D. Schaeffer ([3] p. 175), we have: If

$$\lambda_j \neq \sum_{k=1}^{n} m_k \lambda_k, \quad j = 1, 2, ..., n', m_1, ..., m_n \in \mathbb{N}, \quad \sum_{k=1}^{n} m_k \geq 2. \quad (\text{NRC 1})$$

then given $f \in C^\infty(\mathbb{R}^n)$ flat at x_0, $\exists u \in C^\infty(\mathbb{R}^n)$ such that $Pu = f$ in a neighborhood of x_0.

Observe that the condition (NRC 1) implies that every eigenvalue of $DL(x_0)$ has nonzero real part, that is, x_0 is a hyperbolic critical point for L.

If $c(x_0) = 0$ then, since $Lu(x_0) = 0$, we have $Pu(x_0) = 0$ hence the operator P is not C^∞-solvable at any neighborhood of x_0. Therefore we consider the following non-resonance condition

$$-c(x_0) \neq \sum_{j=1}^{n} m_j \Re \lambda_j, \quad \forall m_1, ..., m_n \in \mathbb{N}, \forall m_{n'+1}, ..., m_n \in 2\mathbb{N}. \quad (\text{NRC 2})$$

Our main result is:

Theorem 1. Let $P = L + c$ be a first order differential operator with coefficients in $C^\infty(X, \mathbb{R})$ with a critical point at x_0. If
(a) (NRC 1) and (NRC 2) are valid,
(b) no orbit of L on $X \setminus \{x_0\}$ is relatively compact in X
and
(c) X is convex with respect to the trajectories of L
then

$$P \text{ is solvable on } C^\infty(X).$$

Also in this paper we consider the relationship between P-convexity and convexity with respect to the trajectories of L for $P = L + c$, see Proposition 1.
This paper is organized in the following way. In Section 2 we present results concerning the relationship between $P-$convexity for supports, $P-$convexity for singular supports and convexity with respect to the trajectories of L when L is a real vector field. In Section 3 we prove Theorem 1.

2. $L-$convexity for supports, $L-$convexity for singular supports and convexity with respect to the trajectories

In this section we use propagation of singularities and of supports to characterize, in geometrical terms, the $L-$convexity for supports and singular supports. From these characterizations, we obtain in our setting the equivalence between those conditions.

The main result of this section is:

Proposition 1. Let L be a real vector field on X. The following conditions are equivalent:

(a) X is $L-$convex for singular supports.

(b) (b.1) $\exists \tilde{K} \subset X$ such that no orbit of $L \mid_{X \setminus \tilde{K}}$ is relatively compact and

(b.2) X is convex with respect to the trajectories of L.

Let L be a non-singular real vector field on X. If one of the following conditions holds:

(i) X is any open set of \mathbb{R}^n and L has constant coefficients

or

(ii) X is a simply connected open subset of \mathbb{R}^2,

then condition (b.1) holds with $\tilde{K} = \emptyset$, because the orbits are lines in case (i) and because of the Poincaré-Bendixson theorem in case (ii). Therefore, under conditions (i) or (ii) above, from Proposition 1 we have (a) \iff (b.2).

Observe that if $L \equiv 0$ then every manifold X is convex with respect to the trajectories of L but X is not $L-$convex for singular supports. If $X \subset \mathbb{R}^2$ is not simply connected then (b.2) $\not\Rightarrow$ (a), for example take $X = \mathbb{R}^2 \setminus \{0\}$ and $L = x_2 \partial_1 - x_1 \partial_2$.

In [14], H. Seifert proposed the following question, which is known as Seifert’s Conjecture: Does every smooth vector field on the 3–dimensional sphere have a periodic orbit? This conjecture was proved to be false for C^1 vector fields by P. A. Schweitzer (see [13]) and latter in the C^∞ case.
by K. Kuperberg (see [8]). In contrast with (ii), the second author in [16]
starting from an example for which the statement of the conjecture is true,
constructed a real non-singular vector field on \mathbb{R}^3 such that $(b2) \not\Rightarrow (a)$.

2.1. Proof of Proposition 1

We will introduce some definitions concerning vector fields. Let L be
a real vector field on a manifold X and γ the associated flow. For each
$x \in X$, we denote the maximal interval of definition of the orbit passing
through x by $I_x = (\omega_-(x), \omega_+(x))$ and the orbit (or trajectory) of x by
$\Gamma_x = \{ \gamma(t, x) ; t \in I_x \}$. Also denote $\Gamma_x^+ = \{ \gamma(t, x) ; 0 \leq t < \omega_+(x) \}$ and $\Gamma_x^- = \{ \gamma(t, x) ; \omega_-(x) < t \leq 0 \}$.

When $\omega_+(x) = +\infty$ (resp. $\omega_-(x) = -\infty$) we define
$\omega(x) = \{ y \in X, \gamma(t_j, x) \to y \text{ for some sequence } t_j \to +\infty \}$
(resp. $\alpha(x) = \{ y \in X, \gamma(t_j, x) \to y \text{ for some sequence } t_j \to -\infty \}$).

We say that $\{ x_0 \} \subset X$ is a local attractor of L when there exist a neigh-
borhood U of x_0 such that $\lim_{t \to \omega_(x)} \gamma(t, x) = x_0$, $\forall x \in U$. In this case, the basin of attraction of $\{ x_0 \}$ is defined by $B(x_0) = \{ x \in X ; \lim_{t \to \omega_(x)} \gamma(t, x) = x_0 \}$.

When $B(x_0) = X$ we say that $\{ x_0 \}$ is a global attractor.

To prove Proposition 1 we will need some preliminary results, namely
Lemma 1 to Lemma 3. Choose a sequence $\{ K_j \}_{j=1}^\infty$ of compact subsets of X such that
$\bigcup K_j = X$, $K_j \subset K_{j+1}$, $j = 1, 2, \ldots$ and
$\forall K \subset X, \exists j_0 \in \mathbb{N}$ such that $K \subset K_{j_0}$.

Here A^o denotes the interior of the subset $A \subset X$.

If K is a compact subset of X then we denote by $C^\infty(K)$ the quotient of
$C^\infty(X)$ by the space consisting of elements vanishing of infinite order on K.
Then $C^\infty(K)$ is a Fréchet Space and the family of seminorms given by

$$ p_j \left(\hat{\phi} \right) = \inf_{\phi \in \hat{\phi}} \frac{1}{\sum_{|\alpha| \leq j} |\partial^\alpha \phi|}, \hat{\phi} \in C^\infty(K), j = 0, 1, 2, \ldots $$

is a basis of continuous seminorms of $C^\infty(K)$. Here $\hat{\phi}$ denotes the class of
$\phi \in C^\infty(X)$ in $C^\infty(K)$. Denote $B_{p_j} = \{ \phi \in C^\infty(K) ; p_j \left(\hat{\phi} \right) < 1 \}$. Then
$\forall j \in \mathbb{N}, \exists C > 0$ such that

$$ L \left(\frac{1}{C} B_{p_{j+1}} \right) \subset B_{p_j}. $$
This implies the continuity of L on $C^\infty (K)$.

We use the identification $(C^\infty (K))' = \mathcal{E}' (K)$, where $\mathcal{E}' (K)$ denotes the space of distributions on X with compact support contained in K. Using this identification we prove the following result, see Theorem 6.4.1 of [2].

Lemma 1. If $K \subset \subset X$ and $L (C^\infty (K)) = C^\infty (K)$ then $\exists \phi \in C^\infty (X)$ such that $L^2 \phi > 0$ on K.

Proof. Choose $j \in \mathbb{N}$ such that $K \subset K_j$ and consider $\phi_1 \in C^\infty (X)$ satisfying $\phi_1 = 1$ on K. From the hypothesis it follows that there exist $\phi_2, \phi \in C^\infty (K)$ such that

$$L \phi_2 - \phi_1 \in \frac{1}{4} B_{p_j},$$

and $L \phi - \phi_2 \in \frac{1}{4C} B_{p_{j+1}}$ (here $C > 0$ is given by (2)). From (2) we obtain

$$L (L \phi - \phi_2) \in \frac{1}{4} B_{p_j}.$$ \hfill (4)

Since $L^2 \phi - \phi_1 = L \left(L \phi - \phi_2 \right) + L \phi_2 - \phi_1$, from (3) and (4) we obtain

$L^2 \phi - \phi_1 \in \frac{1}{2} B_{p_j}$. Hence $\exists \psi \in L^2 \phi - \phi_1$ such that $\sum_{|\alpha| \leq j} \sup_{K_j} |\partial^\alpha \psi| \leq \frac{3}{4}$, in particular $\sup_{K_j} |\psi| \leq \frac{3}{4}$.

But $K \subset K_j$ and $L^2 \phi - \phi_1 = \psi$ on K, therefore $\sup_{K} |L^2 \phi - \phi_1| \leq \frac{3}{4}$. Since $\phi_1 = 1$ on K it follows that $L^2 \phi > \frac{1}{4}$ on K.

Denote $\mathcal{D}' (X)$ the space of the distributions on X.

Remark 1. Let L be a real non-singular vector field on X and $c \in C^\infty (X)$. If $u \in \mathcal{D}' (X)$ and $(L + c) u = 0$ by the Flow Box theorem it follows that $\text{supp} (u)$ is invariant under the flow of L.

Lemma 2. If Γ is a relatively compact orbit of the real vector field L then

(i) $\exists u \in \mathcal{E}' (X)$ such that $t^L u = 0$ and $\text{supp} (u) = \overline{\Gamma}$. So $\text{singsupp} (u) = \Gamma$, if Γ is a periodic orbit.

(ii) For each orbit Λ satisfying $\Lambda \cap \partial \Gamma \neq \emptyset$, $\exists u \in \mathcal{E}' (X)$ such that $t^L u = 0$ and $\text{supp} (u) = \text{singsupp} (u) = \overline{\Lambda} \subset \overline{\Gamma}$.
Proof. We will divide the proof in four steps. From steps 1 and 2 we will have (i) and, from steps 3 and 4 will follow (ii).

Step 1. If Γ is a periodic orbit then $\exists u \in \mathcal{E}'(X)$ such that $t^*Lu = 0$ and $\text{supp} (u) = \text{singsupp} (u) = \Gamma$.

In fact, if Γ is a critical point then we may take u to be Dirac distribution. If Γ is a periodic orbit define $u (\phi) = \int_a^b \phi \circ \gamma (s) \, ds, \phi \in C^\infty (X)$,

\[
(i)
\]

where $a \neq b, \gamma (a) = \gamma (b)$ and γ is the integral curve whose image is Γ. It is easy to see that $\text{supp} (u) = \Gamma$.

Since $WF (u) = \{ (x, \xi) \in T^* (X) ; x \in \Gamma, \xi \neq 0 \text{ and } L (x, \xi) = 0 \}$ (see Example 8.2.5 of [7]) we have $\text{singsupp} (u) = \Gamma$.

Step 2. If Γ is a non-periodic orbit then $\exists u \in \mathcal{E}'(X)$ such that $t^*Lu = 0$ and $\text{supp} (u) = \Gamma$.

In fact, from Lemma 1 and a result concerning solvability on compact subsets due to Duistermaat-H"ormander (see Theorem 6.4.1 of [2]) we have $L (C^\infty (\Gamma)) \neq C^\infty (\Gamma)$. The Hahn-Banach theorem implies that there exists $0 \neq u \in \mathcal{E}' (\Gamma)$ such that $u = 0$ on $L (C^\infty (X))$. Since $t^*Lu = 0$ and L is non-singular in a neighborhood of Γ, using Remark 1 we obtain $\text{supp} (u) = \Gamma$.

Step 3. If Λ is a non-periodic orbit then (ii) holds.

In fact, using the invariance of the sets $\alpha (x)$ and $\omega (x)$ under the flow and the hypothesis $\Lambda \cap \partial \Gamma \neq \emptyset$ we obtain $\overline{\Lambda} \subset \overline{\Gamma}$. From (i) it follows that $\exists u \in \mathcal{E}' (X)$ such that $t^*Lu = 0$ and $\text{supp} (u) = \overline{\Lambda}$. We will prove that $\text{singsupp} (u) = \overline{\Lambda}$. From propagation of singularities (see Theorem 6.1.1 of [2]) it is sufficient to prove that

\[
\Lambda \cap \text{singsupp} (u) \neq \emptyset.
\]

Let $\lambda : \mathbb{R} \to X$ be the integral curve whose the image is Λ and $\psi \in C^\infty (X)$ such that $-t^*L = L + \psi$. For each bounded interval $I \subset \mathbb{R}$, from Flow Box theorem $\exists \phi \in C^\infty (X)$ such that $L \phi = \psi$ in a neighborhood of $\lambda (I)$.

If $\Lambda \cap \text{singsupp} (u) = \emptyset$ then u is a continuous function on Λ. Since $\text{supp} (u) = \overline{\Lambda} \subset \overline{\Gamma}$ it follows that $u = 0$ on $\partial \Gamma$.

\[
(7)
\]
Moreover, since u is a C^∞–function in a neighborhood of $\lambda(I)$ we have
\[
((e^\phi u) \circ \lambda)'(s) = L(e^\phi u) \circ \lambda(s) = (e^\phi (L\phi) u + e^\phi Lu) \circ \lambda(s), \forall s \in I.
\]
But $L\phi = \psi$ in a neighborhood of $\lambda(I)$ and $tLu = 0$, then
\[
((e^\phi u) \circ \lambda)'(s) = 0, \forall s \in I.
\]
We proved that for any bounded interval $I \subset \mathbb{R}$, $\exists \phi \in C^\infty(X)$ such that $e^\phi u$ is a constant function on $\lambda(I)$. Since $\text{supp}(u) = \ov{\Lambda}$ we obtain $u \neq 0$ on Λ. This is a contradiction with (7), since $\Lambda \cap \partial\Gamma \neq \emptyset$. The proof of (6) is finished.

Step 4. If Λ is a periodic orbit then (ii) holds.

In fact, if Λ is a critical point then the result follows from **Step 1.** Otherwise, consider $a < b$ such that $\lambda(a) = \lambda(b)$. In this case, take $I = (a - \epsilon, b + \epsilon)$, where $\epsilon > 0$ is sufficiently small. The proof follows in the same way as the proof of **Step 3.**

We say that $\Gamma := \gamma([a,b])$ is a non-periodic interval of trajectory of L when Γ is homeomorphic to the interval $[0,1] \subset \mathbb{R}$.

Lemma 3. If $\Gamma = \gamma([a,b])$ is a non-periodic interval of trajectory of L then there exists $u \in E'(X)$ such that
\[
\text{supp}(u) = \text{singsupp}(u) = \Gamma
\]
and
\[
\text{supp} \left(tPu \right) = \text{singsupp} \left(tPu \right) = \{ \gamma(a), \gamma(b) \}.
\]

Proof. As in (5) define
\[
v(\phi) = \int_a^b \phi \circ \gamma(s) \, ds, \phi \in C^\infty(X),
\]
It is easy to see that $\text{supp}(v) = \text{singsupp}(v) = \Gamma$ and
\[
tLv = \delta_{\gamma(b)} - \delta_{\gamma(a)}.
\]
Here $\delta_{\gamma(a)}$, $\delta_{\gamma(b)}$ are the Dirac distributions supported on $\gamma(a)$ and $\gamma(b)$, respectively. Since $\gamma(a) \neq \gamma(b)$ we obtain
\[
\text{supp} \left(tLv \right) = \{ \gamma(a), \gamma(b) \}.
\]
From the Flow Box theorem, it follows that \(\exists \phi \in C^\infty (X) \) such that \(L\phi = c \) in a neighborhood \(\Gamma \). Defining \(u = e^{\phi}v \) we obtain \(^tPu = e^{\phi} \cdot ^tLv + e^\phi (c - L\phi) v \). Since \(c = L\phi \) in a neighborhood \(\Gamma \) and \(\text{supp}(v) = \Gamma \) we have \(^tPu = e^{\phi} \cdot ^tLv \). From (8) we obtain the result.

\[\square \]

Proof of Proposition 1. For each \(K \subset X \) define

\[C_K = \{ \Gamma; \Gamma \text{ is a compact interval of trajectory with endpoints in } K \} \]. (9)

Let \(\{ K_j \} \) be a sequence of compact subsets of \(X \) with the properties (1).

Proof of (a) \(\Rightarrow \) (b.1). By taking \(K = \emptyset \) in the definition of the \(P \)-convexity for singular supports we have that \(\exists K' \subset X \) with the following property:

\[u \in \mathcal{E}'(X), \; ^tLu = 0 \Rightarrow \text{singsupp}(u) \subset K'. \] (10)

We will prove that (b.1) holds with \(\tilde{K} = K' \). In fact, suppose that there exists an orbit \(\Gamma \) such that \(\tilde{\Gamma} \subset X \setminus K' \). If \(\Gamma \) is a periodic orbit then from Lemma 2-(i) there exists \(u \in \mathcal{E}'(X) \) such that \(^tLu = 0 \) and \(\text{singsupp}(u) = \Gamma \). This contradicts (10). In case \(\Gamma \) is a non-periodic orbit then we have a contradiction with (10) because of the Lemma 2-(ii).

Proof of (a) \(\Rightarrow \) (b.2). If (b.2) is false then \(\exists K \subset X \) and a sequence of integral curves \(\gamma_j : [a_j, b_j] \rightarrow X \) such that \(\Gamma_j := \gamma_j ([a_j, b_j]) \in C_K \) but \(\Gamma_j \not\subset K_j, \forall j \in \mathbb{N} \).

Choose an open subset \(V_K \) of \(X \) such that \(K \subset V_K \) and \(\overline{V_K} \subset X \). Consider \(j_0 \in \mathbb{N} \) such that \(j \geq j_0 \Rightarrow \overline{V_K} \subset K_{j_0} \). Observe that \(\Gamma_j \) is not a critical point of \(L \) when \(j \geq j_0 \).

Suppose that \(j \geq j_0 \) and \(\Gamma_j \) is a periodic orbit of \(L \). Since \(V_K \) is an open subset of \(X \), \(\exists c_j \in (a_j, b_j) \) such that \(\gamma_j ([a_j, c_j]) \) is a non-periodic interval of trajectory, \(\gamma_j ([a_j, c_j]) \not\subset K_j \) and \(\gamma_j (a_j), \gamma_j (c_j) \in V_K \).

For each \(j \geq j_0 \) define \(\Gamma'_j = \Gamma_j \) if \(\Gamma_j \) is a non-periodic interval of trajectory and \(\Gamma'_j = \gamma_j ([a_j, c_j]) \), otherwise. From Lemma 3, \(\exists u_j \in \mathcal{E}'(X) \) such that \(\text{singsupp}(^tLu_j) \subset V_K \) and \(\text{singsupp}(u_j) = \Gamma'_j \not\subset K_j \). Hence \(X \) is not convex for singular supports.

Proof of (b) \(\Rightarrow \) (a). If \(X \) is not convex for singular supports then \(\exists K \subset X \) with the following property:

\[\forall K' \subset X, \exists u \in \mathcal{E}'(X) \text{ such that } \text{singsupp}(^tLu) \subset K \text{ but } \text{singsupp}(u) \not\subset K'. \] (11)
Let \tilde{K} be as in (b.1) and choose an open subset $V_{\tilde{K}}$ of X such that $\tilde{K} \subset V_{\tilde{K}}$ and $\overline{V_{\tilde{K}}} \subset X$. Define $K_0 = K \cup \overline{V_{\tilde{K}}}$. From (b.2) we have that $\exists K'_0 \subset X$ such that

$$\Gamma \in C_{K_0} \Rightarrow \Gamma \subset K'_0. \tag{12}$$

Property (11) implies there exist $u_0 \in \mathcal{E}'(X)$ and $x \in X$ such that

$$\text{singsupp} (\mathsf{t} L u_0) \subset K \tag{13}$$

and $x \in \text{singsupp} (u_0) \setminus K'_0$. Hence $\Gamma^+_x \cap K_0 = \emptyset$ or $\Gamma^-_x \cap K_0 = \emptyset$. In fact, if $\Gamma^+_x \cap K_0 \neq \emptyset$ and $\Gamma^-_x \cap K_0 \neq \emptyset$ then, from (12), we have $x \in K'_0$. This is a contradiction. Then we may suppose that $K_0 \cap \Gamma^+_x = \emptyset$. Since $K \subset K_0$ we obtain $K \cap \Gamma^+_x = \emptyset$. Using (13) and propagation of singularities we obtain $\Gamma^+_x \subset \text{singsupp} (u_0)$. Hence $\overline{\Gamma^+_x} \subset X$. But using (b.1) we have that Γ^+_x is not relatively compact.

Using the ideas of the proof of Proposition 1 we prove that the L-convexity for supports is equivalent to condition (b) of Proposition 1, when L is a real vector field. Then we have:

Remark 2. Let L be a real vector field on X. Then X is L-convex for supports if, and only if, X is L-convex for singular supports.

The proof of the following remark is analogous to the case $c \equiv 0$ proved in Proposition 1.

Remark 3. Let L be a real vector field on X and $c \in C^\infty (X)$. Define $P = L + c$. Consider the condition (b) of Proposition 1 and the following condition: (a') X is P-convex for singular supports. Then (b) \Rightarrow (a') and (a') \Rightarrow (b.2). Moreover, if $c \in C^\infty_0 (X)$ then (a') \Rightarrow (b.1).

3. Proof of Theorem 1

First we remark that any hyperbolic linear vector field on \mathbb{R}^n satisfies the hypotheses (b) and (c) of Theorem 1. Since condition (NRC 1) implies that x_0 is a hyperbolic critical point of L, the following results imply Theorem 1.

Lemma 4. With $X = \mathbb{R}^n$, suppose (a) holds. Then $\forall f \in C^\infty (\mathbb{R}^n), \exists u \in C^\infty (\mathbb{R}^n)$ such that $Pu = f$ in a neighborhood of zero.
Theorem 2. Suppose that \(x_0 \) is a hyperbolic critical point. If (b) and (c) are true then \(\forall f \in C^\infty (X) \) such that \(f = 0 \) in a neighborhood of \(x_0, \exists u \in C^\infty (X) \), with \(u = 0 \) in a neighborhood of \(x_0 \), such that \(Pu = f \).

Observe that Theorem 2 holds for any smooth complex function \(c \) defined on \(X \).

3.1. Proof of Lemma 4

Before the proof of Lemma 4 we will prove the following preliminary result:

Lemma 5. Suppose that \(X = \mathbb{R}^n \) and \(x_0 = 0 \). Condition (NRC 2) is equivalent to the property: \(\forall f \in C^\infty (\mathbb{R}^n), \exists u \in C^\infty (\mathbb{R}^n) \) such that \(Pu - f \) is flat at the origin.

Proof. We denote by \(Pu \sim f \) when \(Pu - f \) is flat at the origin. Write \(L = \sum_{j=1}^{n} a_j \partial_j \) and consider formal Taylor expansions of \(u, a_j \) and \(c \) at \(x = 0 \):

\[
\sum_{\alpha} \frac{\partial^n u (0)}{\alpha!} x^\alpha,
\sum_{\alpha} \frac{\partial^n a_j (0)}{\alpha!} x^\alpha, j = 1, 2, \ldots, n,
\sum_{\alpha} \frac{\partial^n c (0)}{\alpha!} x^\alpha,
\]

respectively. Then \(Pu \sim f \) is equivalent to

\[
\sum_{j,k} \alpha_k \partial_k a_j (0) \partial^{\alpha + e_j - e_k} u (0) + c (0) \partial^n u (0) + R_\alpha = \partial^n f (0), \forall \alpha \in \mathbb{N}^n, \quad (14)
\]

where \(e_j \) is the unit vector of \(\mathbb{R}^n \) with 1 in the \(j \)th position. The term \(R_\alpha \) depends only on the derivatives of \(u \) of order \(\leq 1 \) evaluated at the origin and has the following property: if \(\partial^\beta u (0) = 0, \forall \beta \in \mathbb{N}^n \) such that \(|\beta| \leq |\alpha| - 1 \), then \(R_\alpha = 0 \), where \(|\alpha| = \sum_{j=1}^{n} \alpha_j, \forall \alpha \in \mathbb{N}^n \).

\(Pu \sim f \) is equivalent to a sequence of linear systems

\[
(B^m + c (0) I) u^m = f^m + v^{m-1}, m \in \mathbb{N}.
\]

Consider \(\Lambda^m_n = \{ \alpha \in \mathbb{N}^n; |\alpha| = m \} \) and \(M = \sharp \Lambda^m_n \). For each \(m \in \mathbb{N}, B^m \) is a real matrix \(M \times M \) which depends on \(DL (0) \) and on the choice of an ordering
of Λ^m_n. The components of $u^m \in \mathbb{C}^M$ (resp. $f^m \in \mathbb{C}^M$) are the derivatives of u (resp. f) of order m evaluated at the origin. If $m \geq 1$ then the vector $v^{m-1} \in \mathbb{C}^M$ corresponds to the term R_α of (14). Define $v^0 = 0 \in \mathbb{R}$. The vector v^{m-1} depends only on the derivatives of u of order $\leq m - 1$ and this vector has the following property:

$$\partial^\alpha u(0) = 0, \forall \alpha \in \mathbb{N}^n \text{ satisfying } |\alpha| \leq m - 1 \Rightarrow v^{m-1} = 0.$$ \hspace{1cm} (16)

Using the real Jordan form for a choice of ordering of Λ^m_n we prove that

$$\text{Spec } B^m \cap \mathbb{R} = \left\{ \sum_{j=1}^n m_j \text{ Re } \lambda_j; m_1, m_2, \ldots, m_n' \in \mathbb{N} \text{ and } m_{n'+1}, m_{n'+2}, \ldots, m_n \in 2\mathbb{N} \right\}. \hspace{1cm} (17)$$

Here Spec A denotes the set of the eigenvalues of the matrix A. Using (16) and (17) we conclude that the systems (15) can be solved recursively for u^0, u^1, \ldots if, and only if, (NRC 2) holds.

Proof of Lemma 4. In view of Lemma 5 it is sufficient to prove that $\forall f \in C^\infty(\mathbb{R}^n)$ with f flat at the origin, $\exists u \in C^\infty(\mathbb{R}^n)$ such that $Pu = f$ in a neighborhood of the origin.

From (NRC 2) we obtain $c(0) \neq 0$. Define $P_1 = \frac{1}{c}P$ in a neighborhood of the origin. Then $P_1 = L_1 + 1$, where $L_1 = \frac{1}{c}L$. Since $L(0) = 0$ we have

$$DL_1(0) = \frac{1}{c(0)}DL(0).$$

Then (NRC 1) holds for L_1. From Sternberg’s result there exists a change of coordinates which carries P_1 into P_2 corresponding to

$$\frac{1}{c(0)}DL(0) + 1.$$

From Guillemin-Schaeffer’s result we conclude the proof of Lemma 4. \hfill \blacksquare

3.2. Preliminaries for Theorem 2

Here, we will prove some preliminary results. Let L be a real vector field on \mathbb{R}^2. Suppose that the origin is a local attractor of L and $\{0\}$ is the unique critical point of L. Under these conditions, from Proposition 1 and since, for
the case, convexity with respect of supports and singular support are the same, the result of dos Santos Filho ([12], p. 263) can be written as, the origin is a global attractor of L if, and only if, $\mathbb{R}^2 \setminus \{0\}$ is convex with respect to the trajectories of L. We begin this section with a version of this result for an arbitrary manifold.

Lemma 6. Suppose that X is a connected manifold and that $\{x_0\}$ is a local attractor of L. If

(i) $\Gamma^+_x \subset \subset X \Rightarrow \omega (x) = \{x_0\}$

and

(ii) X is convex with respect to the trajectories of L

then

$\{x_0\}$ is a global attractor of L.

Proof. We will see that the boundary $\partial B (x_0)$ of the basin of attraction $B (x_0)$ is empty. Suppose there exists $x \in \partial B (x_0)$. Since $\{x_0\}$ is a local attractor of L, $B (x_0)$ is an open subset of X. Hence $\Gamma^+_x \cap B (x_0) = \emptyset$ then $x_0 \notin \Gamma^+_x$. From (i) it follows that Γ^+_x is not relatively compact orbit of L.

Consider neighborhoods U_x of x and U_{x_0} of x_0 such that $U_x \cup U_{x_0} \subset \subset X$. Take $K = U_{x_0} \cup U_x$. It is easy to see that for such K there is no compact K' satisfying the condition for convexity with respect to the trajectories of L, so (ii) is not true.

If x_0 is a hyperbolic critical point local attractor for L, then the conditions (i) and (ii) of Lemma 6 are necessary for $\{x_0\}$ to be a global attractor of L.

Definition 1. A global transversal of L on X is a codimension one immersed submanifold Σ of X such that for all $x \in X$ there exists a unique $t \in \mathbb{R}$ such that $y = \gamma (t, x) \in \Sigma$ and $T_y (\Sigma) \oplus L (y) = T_y (X)$.

Here $T_x (M)$ denotes the tangent space of the manifold M at the point $x \in M$. The Definition 1 is similar to the definition used in [1] p. 15. Now, we state some simple remarks regarding this notion.

Remark 4. Let Σ be a global transversal of L on X.

(i) Let $\tau : X \to \mathbb{R}$ given by: for each $x \in X$, $\tau (x)$ is such that $\gamma (\tau (x), x) \in \Sigma$. Then $\tau \in C^\infty (X, \mathbb{R})$.

(ii) $M = \{(t, y) ; y \in \Sigma, t \in I_y\}$ is an open subset of $\mathbb{R} \times \Sigma$. $h : M \to X$ defined by $h (t, y) = \gamma (t, y)$ is a C^∞-diffeomorphism which carries $\partial \tau / \partial t$ into L.

13
From Remark 4-(ii) and Duistermaat-Hörmander’s theorem (see Theorem 6.4.2 of [2]) we get that the existence of a global transversal of L on X is equivalent to the global solvability of L on $C^\infty(X)$. The next remark follows from Hartman’s theorem (see Theorem 7.1 of [4]).

Remark 5. Let x_0 be a hyperbolic critical point of L. If $\{x_0\}$ is a global attractor of L then any global transversal of L on $X \setminus \{x_0\}$ is a compact subset of $X \setminus \{x_0\}$.

Sketch of the proof: Take a “sphere S centered at x_0” and contained at the neighborhood of x_0 preluded in Hartman’s theorem. Then, we define the mapping T from S to Σ which takes any point of S to the unique point of Σ that belongs to the trajectory of L that passes through x_0. By continuous dependence, the injective mapping T is continuous. Therefore $T(S) \subset \Sigma$ is compact. But by the hypothesis of x_0 being a global attractor we have that, for any point y of Σ, the trajectory starting at y must go into the Hartman’s neighborhood therefore must intercept S. Then T is onto, hence $\Sigma = T(S)$ is compact.

In the lemma below we construct a global transversal in the attractor case.

Lemma 7. Let x_0 be a hyperbolic critical point of L. If $\{x_0\}$ is a global attractor of L then for all neighborhood V of x_0, there exists a global transversal Σ of L on $X \setminus \{x_0\}$ such that $\Sigma \subset V \setminus \{x_0\}$.

Proof. Since $\{x_0\}$ is a global attractor, it follows that $\{x_0\}$ is the unique relatively compact orbit of L. From Hartman’s theorem it follows that there exists a neighborhood U of x_0 such that $U \setminus \{x_0\}$ is convex with respect to the trajectories of L and $U \subset V$. Now, Duistermaat-Hörmander’s theorem implies that exists a global transversal Σ of L on $U \setminus \{x_0\}$. Since $\{x_0\}$ is a global attractor of L then Σ is a global transversal of L on $X \setminus \{x_0\}$. ■

The next result shows that an appropriated perturbation of a global transversal is still a global transversal.

Lemma 8. Let Σ be a global transversal of L on X and $\chi \in C^\infty(\Sigma, \mathbb{R})$ such that $\omega_- (y) < \chi (y) < \omega_+ (y)$, $\forall y \in \Sigma$. The image of the mapping $\sigma: \Sigma \rightarrow X$ given by $\sigma(y) = \gamma(\chi(y), y)$ is a global transversal of L on X.

Proof. From Remark 4-(ii) we may suppose that $X = M$ and $L = \frac{\partial}{\partial t}$. The result holds easily for this case. ■
3.3. Proof of Theorem 2

Let \(s \) be the number of the eigenvalues of \(DL(x_0) \) with negative real part. To prove Theorem 2 we consider two cases:

- **Case A:** \(s \in \{0, n\} \) (attractor or repellent case).
- **Case B:** \(s \notin \{0, n\} \) (saddle point case).

3.3.1. Proof of Case A

Suppose \(s = n \) (the case \(s = 0 \) is analogous). From Lemma 6 it follows that \(\{x_0\} \) is a global attractor of \(L \). Let \(U \) be a neighborhood of \(x_0 \) such that \(f = 0 \) on \(U \) and

\[
x \in U \Rightarrow \Gamma^+_x \subset U. \tag{18}
\]

Choose a neighborhood \(V \) of \(x_0 \) such that \(V \subset U \) and \(\theta \in \mathcal{C}^\infty(X) \) such that

\[
\theta = 0 \text{ on } V \text{ and } \theta = 1 \text{ on } \mathcal{C}U. \tag{19}
\]

From Remark 5 and Lemma 7 there exists a compact global transversal \(\Sigma \) of \(L \) on \(X \setminus \{x_0\} \) contained in \(V \setminus \{x_0\} \). From the Method of Characteristics it follows that \(\exists \psi \in \mathcal{C}^\infty(X \setminus \{x_0\}) \) such that \(L\psi = c\theta \) on \(X \setminus \{x_0\} \) and \(\psi = 0 \) in a neighborhood of \(x_0 \). Then we may suppose \(\psi \in \mathcal{C}^\infty(X) \) and \(L\psi = c\theta \) on \(X \).

In the same way, using (18) we obtain \(\phi \in \mathcal{C}^\infty(X) \) such that \(L\phi = e^\psi f \) on \(X \) and

\[
\phi = 0 \text{ on } U. \tag{20}
\]

Hence

\[
P \left(\phi e^{-\psi} \right) = f + ce^{-\psi} \phi (1 - \theta).
\]

From (19) and (20) it follows \(\phi (1 - \theta) = 0 \). Therefore, by taking \(u = \phi e^{-\psi} \) we have \(Pu = f \).

3.3.2. Preliminaries for Case B

We define the **stable** (resp. **unstable**) manifold of \(L \) at \(x_0 \) by

\[
W^s(x_0) = \left\{ x \in X; \lim_{t \to \omega_+(x)} \gamma(t,x) = x_0 \right\}
\]

(resp. \(W^u(x_0) = \left\{ x \in X; \lim_{t \to \omega_-(x)} \gamma(t,x) = x_0 \right\} \)), which is a \(\mathcal{C}^\infty \) immersed submanifold of \(X \). Take \(X^s = X \setminus W^s(x_0) \) and \(X^u = X \setminus W^u(x_0) \).
If \(\Sigma^s \) (resp. \(\Sigma^u \)) is a global transversal of \(L \) on \(X^s \) (resp. \(X^u \)), we denote
\[X^\pm_s(\Sigma^s) = \{ \gamma(t,y); y \in \Sigma^s, \pm t > 0 \} \quad (\text{resp.} \quad X^\pm_u(\Sigma^u) = \{ \gamma(t,y); y \in \Sigma^u, \pm t > 0 \}) \]
subsets of \(X^s \) (resp. \(X^u \)).

The main result of this section is:

Proposition 2. Let \(U_1 \) be a neighborhood of \(\{x_0\} \). There exists a neighborhood \(U \) of \(\{x_0\} \), with \(U \subset U_1 \), global transversal \(\Sigma^s_1 \) and \(\Sigma^u_1 \) of \(L \) on \(X^s \), and
global transversal \(\Sigma^s_2 \) and \(\Sigma^u_2 \) of \(L \) on \(X^u \) such that:

(i) \(\Sigma^u_2 \subset X^u_+(\Sigma^u_1) \) and \(\Sigma^s_1 \subset X^s_+(\Sigma^s_2) \),

(ii) \(X^u_+(\Sigma^u_1) \cup W^u(x_0) \subset X^s_+(\Sigma^s_1) \cup U \)

and

(iii) \(\forall f \in C^\infty(X) \) such that \(f = 0 \) on \(X^s_+(\Sigma^s_2) \cup W^s(x_0) \cup U \) (resp. \(X^u_+(\Sigma^u_1) \cup W^u(x_0) \)), \(\exists u \in C^\infty(X) \) such that \(Lu = f \) and \(u = 0 \) on \(U \) (resp. \(u = 0 \) on \(X^u_+(\Sigma^u_1) \cup W^u(0) \)).

For the proof of Proposition 2, we do not use that \(T_x(\Sigma^s_1) \oplus L_x = T_x(X) \), \(\forall x \in \Sigma^s_1 \), similarly for \(\Sigma^u_1 \).

In order to prove Proposition 2 we will use some preliminary results, here Lemma 9 to Lemma 13.

Lemma 9.

(i) \(W^s(x_0) \cap W^u(x_0) = \{x_0\} \).

(ii) \(W^s(x_0) \) (resp. \(W^u(x_0) \)) is a closed subset of \(X \).

Proof. (i) If \(x \in W^s(x_0) \cap W^u(x_0) \) then \(\alpha(x) = \omega(x) = \{x_0\} \). Hence \(\Gamma_x \subset \subset X \). From (b) it follows that \(x = x_0 \).

(ii) If \(W^s(x_0) \) is not closed in \(X \) then there exists a sequence \(\{x_j\} \subset W^s(x_0) \) converging to some \(x \in X \setminus W^s(x_0) \). Hence \(x_0 \in \omega(x) \). Since \(\omega(x) \) is invariant under the flow, from (b) it follows that \(\Gamma_x \) is not relatively compact. Using the same arguments of the proof of Lemma 6 we obtain the result.

From Lemma 9-(ii) we have:

Remark 6. \(X^s \) (resp. \(X^u \)) is an open subset of \(X \). Therefore \(X^+_s(\Sigma^s) \) and \(X^-s(\Sigma^s) \) (resp. \(X^+_u(\Sigma^u) \) and \(X^-u(\Sigma^u) \)) are open subsets of \(X \).

Moreover:

Lemma 10. \(X^s \) (resp. \(X^u \)) is convex with respect to the trajectories of \(L \).
Proof. Suppose that X^s is not convex with respect to the trajectories of L, then there exist $K \subset X$, a sequence $\{\Gamma_j\}$ of compact intervals of trajectories of L with endpoints in K and a sequence $\{x_j\}$ such that

$$x_j \in \Gamma_j \setminus K_j, \forall j \in \mathbb{N}$$ \hspace{0.5cm} (21)

here $\{K_j\}$ is a sequence of compact subsets of X^s satisfying the properties (1). From hypothesis (c) of Theorem 2 it follows that $\exists K' \subset \mathbb{R}^n$ such that $\{x_j\} \subset K'$. Hence there exist $x \in X$ and a subsequence $\{x_{j_k}\} \subset \{x_j\}$ such that $x_{j_k} \to x$. Without loss of generality, we may suppose that $x_j \to x$. Observe that from (21) we have

$$x \in W^s(x_0).$$ \hspace{0.5cm} (22)

We will divide the rest of the proof in two cases.

Case $x \neq x_0$.

In this case take a sequence $\{C_k\}$ of compact subsets of X satisfying the properties (1). Since $x \neq x_0$, from (b) it follows that $\forall k \in \mathbb{N}, \exists y_k \in \Gamma_x \setminus C_k$. Using (22) we obtain $[x, y_k] \cap K = \emptyset$, then from Flow Box theorem there exists a neighborhood V_k of $[x, y_k]$ such that $L|_{V_k}$ is conjugated to ∂_1 and $V_k \cap K = \emptyset$. Since $x_j \to x$ follows that $\exists j_k \in \mathbb{N}$ with the following property: $\forall j > j_k, \exists z_j \in \Gamma_j \cap C_k$. Then (c) fails.

Case $x = x_0$.

From the proof of the previous case it is sufficient to prove that there exist $w \in W^s(x_0)$, with $w \neq x_0$, and a sequence $w_j \to w$ such that $w_j \in \Gamma_j, \forall j \in \mathbb{N}$.

Since $K \cap W^s(x_0) = \emptyset$ and $x_0 \in W^s(x_0)$ there exists a neighborhood V of x_0 satisfying $K \cap V = \emptyset$.

From Hartman’s theorem we have there exists an open subset U of X such that $x_0 \in U \subset V$ and $U \setminus W^s(x_0)$ is convex with respect to the trajectories of L.

Consider a neighborhood W of x_0 such that $W \subset U$ and ∂W is homeomorphic to the sphere S^{n-1}. Choose $j_0 \in \mathbb{N}$ such that $j > j_0 \Rightarrow x_j \in W$. Since the endpoints of Γ_j are contained in K, from the continuity of Γ_j it follows that there exist $w_j, w'_j \in \Gamma_j \cap \partial W$ such that $x_j \in [w_j, w'_j]$. From a compactness argument there exist subsequences $\{w_{j_k}\} \subset \{w_j\}$ and $\{w'_{j_k}\} \subset \{w'_j\}$ such that $w_{j_k} \to w$ and $w'_{j_k} \to w'$. It is sufficient to prove that

$$w \in W^s(x_0) \text{ or } w' \in W^s(x_0).$$ \hspace{0.5cm} (23)
If \(w \notin W^s(x_0) \) and \(w' \notin W^s(x_0) \) then the sequences \(\{w_j\} \) and \(\{w'_j\} \) are contained in a compact subset of \(\partial W \setminus W^s(x_0) \). Hence \(U \setminus W^s(x_0) \) is not convex with respect to the trajectories of \(L \).

Using Lemma 10 we obtain:

Remark 7. \(X_+^s(\Sigma^s) \) and \(X_-^s(\Sigma^s) \) (resp. \(X_+^u(\Sigma^u) \) and \(X_-^u(\Sigma^u) \)) are convex with respect to the trajectories of \(L \).

Let \(\Sigma^s \) be a global transversal of \(L \) on \(X^s \). Observe that \(W^u(x_0) \) and \(\Sigma^s \) are immersed submanifold of \(X \) and \(\Sigma^s \) is transversal to \(W^u(x_0) \). Then we have:

Remark 8. If \(\Sigma^s \) is a global transversal of \(L \) X^s (resp. \(\Sigma^u \) is a global transversal of \(L \) on \(X^u \)) then \(K := \Sigma^s \cap W^u(x_0) \) (resp. \(K := \Sigma^u \cap W^s(x_0) \)) is a global transversal of \(L|_{W^u(x_0)} \) on \(W^u(x_0) \setminus \{x_0\} \) (resp. of \(L|_{W^s(x_0)} \) on \(W^s(x_0) \setminus \{x_0\} \)), furthermore \(K \subset X \).

Hartman’s theorem is used to prove:

Lemma 11. If \(\Sigma^s \) (resp. \(\Sigma^u \)) is a global transversal of \(L \) on \(X^s \) (resp. on \(X^u \)) then \(X^s(\Sigma^s) \cup W^s(0) \) (resp. \(X^u(\Sigma^u) \cup W^u(0) \)) is an open subset of \(X \).

Proof. From Remark 6 is sufficient to prove that \(\forall x \in W^s(x_0) \) there exists a neighborhood \(V_x \) of \(x \) such that \(V_x \subset X^s(\Sigma^s) \cup W^s(x_0) \). In the other hand from the continuity of \(\gamma \) it is sufficient to prove that there exists a neighborhood \(V_0 \) of \(x_0 \) such that

\[
V_0 \subset X^s(\Sigma^s) \cup W^s(x_0).
\]

(24)

Consider the function \(\tau : X^s \to \mathbb{R} \) given by the Remark 4-(i) and take \(K = \Sigma^s \cap W^u(x_0) \). We will divide the rest of the proof in two steps.

Step 1. There exists an open subset \(U_0 \) of \(X \) such that \(x_0 \in U_0 \) and \(U_0 \cap W^u(x_0) \setminus \{x_0\} \subset X^s(\Sigma^s) \).

In fact, since \(K \subset X \) (see Remark 8), there exists an open subset \(U_0 \) of \(X \) such that \(x_0 \in U_0 \), \(U_0 \cap K = \emptyset \), \(U_0 \) satisfies the conclusion of Hartman’s theorem and \(U_0 \) is convex with respect to the trajectories of \(L \).

It is enough to prove that \(\tau(y) > 0, \forall y \in U_0 \cap W^u(x_0) \setminus \{x_0\} \). From \(U_0 \cap K = \emptyset \) we have \(\tau(y) \neq 0 \). Suppose that \(\tau(y) < 0 \). Since \(x_0 \) is a hyperbolic
critical point of L and x_0 is a global attractor of $-L$ on $W^u(x_0)$, there exists an open subset A of $W^u(x_0)$, with $x_0 \in A \subset U_0 \cap W^u(x_0)$, such that

$$t \leq 0, z \in A \Rightarrow \gamma(t, z) \in A. \tag{25}$$

Choose $t_0 < 0$ such that $\gamma(t_0, y) \in A$. If $\tau(y) \leq t_0$, from (25) it follows that $\gamma(\tau(y), y) \in U_0$. This is a contradiction, because $U_0 \cap K = \emptyset$. Hence $t_0 < \tau(y) < 0$. Since U_0 is convex with respect to the trajectories of L, these inequalities imply $\gamma(\tau(y), y) \in U_0$ and this is a contradiction with $K \cap U_0 = \emptyset$. Hence $t_0 < \tau(y) < 0$.

Step 2. There exists a neighborhood V_0 of x_0 with the property (24).

In fact, from Hartman’s theorem there exists a subset Σ' of X such that $\Sigma' \subset U_0 \setminus \{x_0\}$ and Σ' is homeomorphic to S^{n-1}. Define $\Delta = \Sigma' \cap W^u(x_0)$. From Lemma 9-(ii) we have $\Delta \subset \subset X$. From **Step 1** it follows that there exists a neighborhood V_Δ of Δ such that

$$V_\Delta \subset X^s(\Sigma') \cap U_0. \tag{26}$$

Using (26), Hartman’s theorem and the compactness of Δ we prove that there exists a neighborhood V_0 of x_0 such that $V_0 \setminus W^s(x_0) \subset X^s(\Sigma^s)$. This inclusion implies the statement of **Step 2**.

From these lemmas we will construct global transversal of L on X^s with special properties. Denote $[x, y]$ the interval of trajectory of L with endpoints x and y.

Lemma 12. Let U_1 be a neighborhood of $\{x_0\}$. Then there exists an open set U, with $x_0 \in U \subset U_1$, satisfying the conclusion of the Hartman’s theorem with U convex with respect to the trajectories of L, and global transversal Σ^s_1 and Σ^s_2 of L on X^s such that:

(i) $\Sigma^s_1 \cap W^u(x_0) \subset U$,

(ii) $\Sigma^s_1 \subset X^s(\Sigma^s_2)$

and

(iii) $x \in \Sigma^s_2, y \in \Gamma^+_x \cap U \Rightarrow [x, y] \subset U$.

Proof. From the hypothesis (b) of Theorem 2, Lemma 10 and Duisteramaat-Hörmander’s theorem it follows that there exists a global transversal Σ^s_0 of L on X^s. From Lemma 11 there exists an open subset U of X, with $x_0 \in U \subset U_1$ such that: $U \subset X^s(\Sigma^s_0) \cup W^s(x_0)$, U satisfies the conclusion of Hartman’s
theorem and U is convex with respect to the trajectories of L. Observe that U has the additional property:

$$y \in \Sigma^s_0, \gamma(t, y) \in U \Rightarrow t < 0.$$ \hfill (27)

We will divide the rest of the proof in four steps.

Step 1. There exist $T \in \mathbb{R}$ and an open subset W_0 of Σ^s_0, with $K \subset W_0$, such that

$$y \in W_0 \Rightarrow \omega_-(y) < T < 0$$ \hfill (28)

and

$$y \in W_0 \Rightarrow \gamma(T, y), \gamma(T/2, y) \in U.$$ \hfill (29)

In fact, consider an open subset V of Σ^s_0 such that $W_u(x_0) \subset V$ and $\omega_-(y) = -\infty, \forall y \in V$. Take $K = \Sigma^s_0 \cap W_u(x_0)$. For each $y \in K$ take $t_y < 0$ such that $\gamma(t, y) \in U, \forall t \leq t_y$. From compactness of K there exists $T < 0$ such that $t \leq T \Rightarrow \gamma(t, y) \in U, \forall y \in K$. By continuity of γ it follows that there exists an open subset V_0 of X such that $K \subset V_0 \subset V$ and $\gamma(T, y), \gamma(T/2, y) \in U, \forall y \in V_0$. Set $W_0 = V_0 \cap \Sigma^s_0$.

Step 2. There exist a sequence $\{t_j\}_{j=1}^\infty \subset \mathbb{R}$ and a locally finite cover $\{W_j\}_{j=1}^\infty$ of Σ^s_0 such that

$$y \in W_j \Rightarrow 0 < t_j < \omega_+(y).$$ \hfill (30)

In fact, for each $y \in \Sigma^s_0$ choose $t_y \in \mathbb{R}$ and a neighborhood V_y of y such that $0 < t_y < \omega_+(y), \forall y \in V_y$. Consider a locally finite refinement $\{W_j\}_{j=1}^\infty$ of the cover $\{V_y \cap \Sigma^s_0\}_{y \in \Sigma^s_0}$. For each $j \geq 1$ choose V_y such that $W_j \subset V_y \cap \Sigma^s_0$ and define $t_j = t_y$. Hence **Step 2** follows.

Consider $\mu_0 \in C^\infty(\Sigma^s_0, \mathbb{R})$ such that $0 \leq \mu_0 \leq 1, \mu_0 = 1$ in a neighborhood of K and $\text{supp}(\mu_0) \subset W_0$. Let $\{\mu_j\}_{j=1}^\infty$ be a partition of unity subordinated to the cover $\{W_j\}_{j=1}^\infty$. Consider the functions $\chi_1, \chi_2 \in C^\infty(\Sigma^s_0, \mathbb{R})$ given by

$$\chi_1 = \frac{T}{2} \mu_0 + (1 - \mu_0) \sum_{j=1}^\infty t_j \mu_j \text{ and } \chi_2 = T \mu_0.$$

Then we have the following result:

Step 3. For each $j = 1, 2$, the image Σ^s_j of the function

$$\sigma_j : \Sigma^s_0 \rightarrow X^*$$

$$y \mapsto \gamma(\chi_j(y), y)$$
is a global transversal of L on X^s.

In fact, from (28) it follows that $\omega_-(y) < \chi_2(y) < \omega_+(y), y \in \Sigma_0^s$. In the same way, from (28) and (30) we have $\omega_-(y) < \chi_1(y) < \omega_+(y), y \in \Sigma_0^s$. From Lemma 8 it follows that Σ_1^u and Σ_2^u are global transversal of L on X^s.

Step 4. The statements (i), (ii) and (iii) hold, if Σ_1^s and Σ_2^s are given as in **Step 3**.

In fact, to prove (i), observe that for each $x \in \Sigma_1^s \cap W^u(x_0), \exists y \in K$ such that $x = \gamma(\chi_1(y), y)$ because Σ_0^s is a global transversal of L on X^s and $W^u(x_0)$ is invariant under the flow. Since $\mu_0(y) = 1$ and from (29) it follows that $x \in U$. So proof of (i) is concluded. Observe that (ii) follows from $\chi_2 < \chi_1$.

For (iii), first we observe that for each $x \in \Sigma_2^s$ and $y \in \Gamma^+ \cap U$, we can take $t \geq 0$ such that $\gamma(t, x) = y$. Since U is convex with respect to the trajectories of L, it is sufficient to prove that $x \in U$. Choose $z \in \Sigma_0^s$ such that $\gamma(\chi_2(z), z) = x$. We will prove that $z \in W_0$. If $z \notin W_0$ then $\chi_2(z) = 0$. But $y = \gamma(t, \chi_2(z), z)$ have $y = \gamma(t, z)$. Therefore from (27) it follows that $t < 0$. This is a contradiction. Then we have $z \in W_0$.

Since $T \leq \chi_2(z) \leq t + \chi_2(z)$ and U is convex with respect to the trajectories L, from (29) and $y \in U$ we have $x \in U$.

Also we have:

Lemma 13. Let U be the neighborhood of x_0 and Σ_0^s the global transversal of L on X^s given by Lemma 12. There exist global transversal Σ_1^u and Σ_2^u of L on X^u such that:

(i) $\Sigma_1^u \cap W^s(x_0) \subset U,$

(ii) $\Sigma_2^u \subset X^u(\Sigma_1^u)$

and

(iii) $\Sigma_1^u = \Sigma_1^s$ on \overline{U}.

Proof. In the same way as the proof of Lemma 12 we have that there exists a global transversal Σ_0^u of L on X^u such that $K := \Sigma_0^u \cap W^s(x_0) \subset U$. Consider the function $\tau : X^s \to \mathbb{R}$ given by $\gamma(\tau(y), y) \in \Sigma_1^s$. We will divide the rest of the proof in three steps.

Step 1. There exists an open subset W_0 of Σ_0^s such that $K \subset W_0 \subset U$ and

$$y \in W_0 \Rightarrow \gamma(\tau(y), y) \in U.$$

(31)

In fact, consider a subset Σ' of $U \setminus \{0\}$ homeomorphic to S^{n-1}. Here the homeomorphism is given by Hartman’s theorem. Take $\Delta = \Sigma' \cap W^u(x_0)$.
Using Lemma 12-(i) it follows that there exists a neighborhood \(V_\Delta \) of \(\Delta \) such that
\[
y \in V \Rightarrow \gamma (\tau (y), y) \in U. \tag{32}
\]
Moreover, using the compactness of \(\Delta \) and Hartman’s theorem we prove that there exists a neighborhood \(V_0 \) of \(x_0 \) with the following property:
\[
y \in V_0 \setminus W^s (0) \Rightarrow \exists t \in \mathbb{R} \text{ such that } \gamma (t, y) \in V. \tag{33}
\]
From (32), (33) and from the continuity of \(\gamma \) Step 1 follows.

Consider \(\mu \in C^\infty (\Sigma_0^u, \mathbb{R}) \) such that \(0 \leq \mu \leq 1 \), \(\mu = 1 \) in a neighborhood of \(K \) and \(\text{supp} (\mu) \subset W_0 \). Since \(\Sigma_0^u \) is an immersed submanifold of \(X \), we have \(\tau |_{\Sigma_0^u \setminus K} \in C^\infty (\Sigma_0^u \setminus K) \). Let \(\chi_1 : \Sigma_0^u \rightarrow X^u \) be the function given by \(\chi_1 = (1 - \mu) \tau |_{\Sigma_0^u \setminus K} \). Then we have that \(\chi_1 \in C^\infty (\Sigma_0^u, \mathbb{R}) \).

Step 2. The image \(\Sigma_1^u \) of the function
\[
\sigma_1 : \Sigma_0^u \rightarrow X^u \quad y \mapsto \gamma (\chi_1 (y), y)
\]
is a global transversal of \(L \) on \(X^u \) which satisfies (i).

In fact, from Lemma 8, \(\Sigma_1^u \) is a global transversal of \(L \) on \(X^u \), since \(\mu = 1 \) on \(K \) we have \(\Sigma_1^u \cap W^s (0) = K \), hence \(\Sigma_1^u \cap W^s (0) \subset U \). Then Step 2 follows.

The existence of \(\Sigma_2^u \) with the property is proved in the same way as in the proof of Lemma 12-(iii).

Step 3. The statement (iii) holds.

In fact, we will prove that
\[
\Sigma_1^u \cap \mathcal{C} U \subset \Sigma_1^s \tag{34}
\]
and
\[
\Sigma_1^s \cap \mathcal{C} U \subset \Sigma_1^u. \tag{35}
\]
To prove (34), take \(x \in \Sigma_1^u \cap \mathcal{C} U \) and choose \(y \in \Sigma_0^s \) such that \(\gamma (\chi_1 (y), y) = x \). If \(y \in W_0 \) then from (31) and \(|\chi_1 (y)| \leq |\tau (y)| \) result \(x \in U \). This is a contradiction. From \(y \notin W_0 \) it follows that \(\chi_1 (y) = \tau (y) \). Hence \(x \in \Sigma_1^s \) and the proof of (34) is finished. In the same way we prove (35).

Proof of Proposition 2.

Proof of (i). Use Lemma 12-(ii) and Lemma 13-(ii), respectively.

Proof of (ii). From Lemma 12-(i) it follows that \(W^u (x_0) \subset X^+_s (\Sigma_1^u) \cup U \), and Lemma 13-(iii) implies \(X^+_u (\Sigma_1^u) \subset X^+_s (\Sigma_1^s) \cup U \).

3.3.3. Proof of Case B

Let U_1 be a neighborhood of x_0 such that $f = 0$ on U_1. With the notation of the Proposition 2, we will prove Case B in two steps.

Step 1. \(\forall f \in C^\infty (X) \text{ such that } f = 0 \text{ on } U \exists u_1 \in C^\infty (X) \text{ such that } P u_1 = f \text{ on } U \cup X_+^s(\Sigma_1^s). \)

In fact, from Proposition 2-(i) and Lemma 10 choose $\theta_1 \in C^\infty (X)$ such that

\[
\theta_1 = 0 \text{ on } X^s(\Sigma_2^u) \cup W^s(x_0) \text{ and } \theta_1 = 1 \text{ on } X_+^s(\Sigma_1^s). \tag{36}
\]

By the Method of Characteristics and Lemma 11, \(\exists \psi_1 C^\infty (X) \) such that \(L \psi_1 = c \theta_1 \). From Proposition 2-(iii), \(\exists \phi_1 C^\infty (X) \) such that \(L \phi_1 = \theta_1 f e^{\psi_1} \) and \(L \phi_1 = \theta_1 f e^{\psi_1} \) and

\[
\phi_1 = 0 \text{ on } U. \tag{37}
\]

Hence

\[
P (\phi_1 e^{-\psi_1}) = \theta_1 f + c e^{-\psi_1} \phi_1 (1 - \theta_1). \]

Since $f = 0$ on U, from (36) and (37) it follows that on $X^s_+ (\Sigma_1^s) \cup U$ we have

\[
\phi_1 (1 - \theta_1) = 0 \text{ and } \theta_1 f = f.
\]

Therefore, by taking $u_1 = \phi_1 e^{-\psi_1}$ Step 1 follows.

Step 2. \(\forall f \in C^\infty (X) \text{ such that } f = 0 \text{ on } U \cup X_+^s(\Sigma_1^s), \exists u \in C^\infty (X) \text{ such that } P u = f \text{ on } X. \)

In fact, from Proposition 2-(i) and Lemma 11, choose $\theta_2 \in C^\infty (X)$ such that

\[
\theta_2 = 0 \text{ on } X^u_+ (\Sigma_2^u) \cup W^u(x_0) \text{ and } \theta_2 = 1 \text{ on } X^u_- (\Sigma_1^u).
\]

Therefore, \(\exists \psi_2 \in C^\infty (X) \) such that \(L \psi_2 = c \theta_2 \). Since $f = 0$ on $U \cup X_+^s(\Sigma_1^s)$, from Proposition 2-(ii)-(iii) it follows that \(\exists \phi_2 \in C^\infty (X) \) such that \(L \phi_2 = f e^{\psi_2} \) and \(\phi_2 = 0 \text{ on } U \cup X_+^s(\Sigma_1^s). \)

Hence

\[
P (\phi_2 e^{-\psi_2}) = f + c e^{-\psi_2} \phi_2 (1 - \theta_2),
\]

and

\[
\phi_2 (1 - \theta_2) = 0 \text{ on } X^s_+ (\Sigma_1^u) \cup U \cup X^u_- (\Sigma_1^u).
\]

Therefore, taking $u = \phi_2 e^{-\psi_2}$ Step 2 follows.

Remark 9. The hypotheses (NRC 2) and (c) are necessary for global solvability of P on $C^\infty (X)$ from Lemma 5; and Remark 2, Theorem 4 of [9], respectively.
When L is a linear vector field on \mathbb{R}^n, it is easy to see that (b) and (c) of Theorem 1 are verified. In this case, the hypothesis of linearization (NRC 1) is dropped and we have that $P = L + c$ is globally solvable on $C^\infty(\mathbb{R}^n)$ if, and only if, (NRC 2) holds. In particular, the condition (NRC 1) is not necessary for global solvability.

Now, we present a family of operators for which the condition (b) is necessary for global solvability. Take $p(x) = \sum_{j=0}^{n} a_j x^j$, be a real polynomial. Let L be the vector field on \mathbb{R}^2 given by

$$L = x_1(1 - x_1)\partial_1 + x_2g(x_1, x_2)\partial_2, \quad (x_1, x_2) \in \mathbb{R}^2,$$

where $g \in C^\infty(\mathbb{R}^2)$. Notice that $(0, 0), (1, 0)$ are critical points and $(0, 1) \times \{0\}$ is a relatively compact orbit of L. Take the operator $P = L + c$ with $c \in C^\infty(\mathbb{R}^2)$ satisfying

$$c(x_1, 0) = p(x_1), x_1 \in \mathbb{R}.$$

Under these hypotheses we have (see [16] p. 59)

If

$$a_0 \notin \mathbb{Z} \quad \text{and} \quad a_j \notin \{1, 2, ..., n\}, j = 1, 2, ..., n,$$

then $\exists u \in \mathcal{E}' \in (\mathbb{R}^2)$ such that $Pu = 0$ and $\text{supp}(u) = [0, 1] \times \{0\}$. Hence P is not globally solvable on $C^\infty(\mathbb{R}^2)$.

References

