Graduação em Matemática

Classificação topológica de curvas em superfícies orientáveis

Palestrante: Ingrid Sofia Meza Sarmiento
Universidade Federal de São Carlos 
Data: 03/09 
Horário: das 15:00 às 15:15
Local: Auditório DM

Resumo: A classificação de curvas em superfícies (orientáveis ou não orientáveis) aparece em alguns contextos. Por exemplo, a classificação das imersões de S1 em superfícies (orientáveis ou não orientáveis) está relacionada com as palavras de Gauss [4]; em [1] a classificação das curvas em superfícies é chamada de geotopia; em [2], p. 39, a classificação de curvas em superfícies orientáveis é apresentada (embora n˜ao seja feita uma demonstração explícita desse resultado) com o objetivo de apresentar a técnica chamada de princípio de mudança de coordenadas, utilizada na teoria de grupo de classes de aplicações; e na classificação topológica de folheações em superfícies [3]. O objetivo deste trabalho é apresentar a classificação das curvas em superfícies orientáveis por um homeomorfismo ambiente. Vale observar que a resposta ao problema da ah-equivalência depende da resposta de um problema de extensão. A classificação aqui apresentada é uma generalização daquela descrita por Rolfsen em [5] para o caso dos nós em S2 e no toro e, coincide com o conceito de equivalência de nós usado na classificação de nós em S3 . Mas essa classificação difere da classificação das curvas por homotopia ou homologia.

 

Referências
[1] J.S. Carter, Classifying immersed curves, Proc. Amer. Math. Soc., 111 (1991), 281–287.
[2] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, 2012.
[3] J. Martinez-Alfaro, I. S. Meza-Sarmiento and R. D. S. Oliveira, Singular levels and topological invariants of Morse Bott integrable systems on surfaces, J. Differential Equations 260 (2016), 688–707.
[4] M. McIntyre, Bounding immersed curves, Topology Appl., 78 (1997), 251–267.
[5] D. Rolfsen, Knots and Links, Math. Lecture Ser. No 7. Publish or Perish, Inc., Berkeley, Calif., 1976

© 2018 Graduação em Matemática - UFSCar - Rod. Washington Luís, Km 235 - São Carlos, SP - Brasil - 13565-905