Mergulho forte de Whitney vs. não-mergulho de espaços projetivos |
|
Palestrante: Lejzer Javier Castro Tapia |
Data: 27/10 |
Resumo: Neste seminário, vamos apresentar a maquinaria de topologia diferencial e teoria de fibrados trás o teorema forte de mergulho de Whitney, que afirma que toda n-variedade suave pode ser mergulhada no espaço Euclidiano R2n. Logo, vamos mostrar como a topologia algébrica, especificamente as classes característica de Stiefel-Whitney, são usadas para provar que os espaços projetivos reais Pn de dimensão n=2k não podem ser mergulhados no espaço euclidiano R2n-1, evidenciando que o teorema de Whitney não pode ser refinado. |