NDE - Licenciaturas

Dízimas periódicas e suas propriedades

Ministrante: João Carlos Vieira Sampaio
Universidade Federal de São Carlos

Datas: 07/10 e 08/10
Horário: das 17:15 às 20:15 horas

Local: Auditório DM

Resumo: Ao explorar dízimas periódicas surge a pergunta sobre como determinar o comprimento (número de dígitos) do período da dízima periódica sem que conheçamos quais são os dígitos da dízima. Isto é possível com o uso de congruências módulo m. Por exemplo, de um teorema de Gauss em Disquisitiones Arithmeticae, de 1801, a dízima periódica de fração geratriz 1/31 terá comprimento 15 porque 10^15 ≡ 1 (mod 31), e 15 é o primeiro inteiro positivo s tal que 10^s ≡ 1 (mod 31). Dentre outras propriedades de dízimas periódicas a serem divulgadas nesta palestra, temos o teorema de Etiénne Midy, que em 1835 demonstrou que considerando-se por exemplo 1/7 = 0,142857, temos 142 + 857 = 999, esta soma sendo um número descrito por uma fileira de noves, e que esta propriedade também é válida para todas as frações irredutíveis n/p, em que o denominador p é primo, p ≥ 7, e a dízima periódica correspondente se subdivide em dois blocos de mesmo comprimento. Em 2004 Brian Ginsberg chamou a atenção para o fato de que, considerando-se por exemplo a fração “unitária” 1/7 = 0;142857, temos 14 + 28 + 57 = 99, ainda um resultado descrito poruma fileira de noves, e que esta propriedade é válida para frações 1/p em que o denominador p é primo e o período da dízima pode ser subdividido em três blocos de comprimentos iguais.

Subcategorias

As Atividades Curriculares de Integração Ensino, Pesquisa e Extensão (ACIEPEs) são atividades curriculares complementares inseridas nos currículos de graduação, com duração semestral de 60 horas, valendo 4 créditos acadêmicos.

Os estudantes dos cursos de Licenciatura e Bacharelado em Matemática podem se matricular em qualquer uma constante no catálogo semestral de ACIEPEs, disponível no site da Pró-Reitoria de Extensão - ProEx.

 
Será um seminário de alcance interinstitucional dirigido especialmente por e para nossas e nossos estudantes de final de graduação ou início da pós-graduação,  com interesse em temas de topologia algébrica ou assuntos correlatos (sem definição precisa), permitindo a troca de informações e a criação de uma comunidade.
 
Acontecerá quinzenalmente, ao cair da tarde das segundas-feiras,  às 18 horas, a partir da próxima segunda-feira, 30 de agosto de 2021. 
 
Caso queira fazer parte da lista de divulgação, por favor escreva para: daniel.vendruscolo@ufscar.br
© 2018 Graduação em Matemática - UFSCar - Rod. Washington Luís, Km 235 - São Carlos, SP - Brasil - 13565-905