Monografias

P-ádicos e t-ádicos: uma introdução à teoria de valorizações

Palestrante: Caio Henrique Silva de Souza
Programa de Pós-Graduação em Matemática da UFSCar

Data: 25/09
Horário: das 8:00 às 8:30 horas

Local: Auditório do DM

Resumo: Nesta apresentação vamos fazer uma breve introdução à Teoria de Valorizações utilizando dois exemplos motivadores: o corpo Qp dos números p-ádicos e o corpo K((tΓ)) das séries formais de potências de Hahn. Serão apresentadas propriedades destes corpos que mostram como estes s ̃ao diferentes dos tradicionais corpos numéricos Q, R e C. Também responderemos a uma pergunta inicial em Teoria de Valorizações sobre a existência de um corpo valorado com grupo de valores e corpo de res ́ıduos previamente estabelecidos.

Práticas geométricas através de oficinas de origami.

Apresentadora: Milena Cardozo de Souza
Programa de Pós-Graduação em Ensino de Ciências Exatas

Data: 27/09
Horário: das 09:00 às 11:00 horas

Local: Saguão 
do DM

Resumo: O uso do origami como recurso pedagógico nas aulas de Matemática possibilita diversos benefícios para a ampliação dos conhecimentos geométricos, pois permite que os alunos visualizem e manipulem conceitos abstratos de forma concreta. Ao realizar as dobras, é possível explorar figuras planas e espaciais, ângulos, simetrias, áreas, perímetros e também relações entre formas, o que facilita a compreensão de conteúdos muitas vezes considerados difíceis. Além disso, o origami estimula o raciocínio lógico, a concentração e a coordenação motora, tornando a aprendizagem mais dinâmica, lúdica e prazerosa.  

Este projeto tem como objetivo a prática do origami dentro da sala de aula, dando continuidade a um primeiro trabalho sobre esse mesmo tema (que foi a Monografia de conclusão de curso da autora, em 2007). Nessa nova etapa as ideias levantadas no trabalho anterior serão aplicadas efetivamente, em sala de aula, integrando teoria e prática. Inicialmente, os alunos conhecerão brevemente a história do origami e sua relação com a Matemática, destacando que cada dobra e cada figura formada correspondem a construções geométricas. Em seguida, os alunos poderão confeccionar seus origamis, de forma orientada, explorando dobras simples, como formar um triângulo a partir de um quadrado, assimilando conceitos de diagonais, simetria e ângulos. A cada etapa, espera-se que os alunos associem as dobras com conteúdos matemáticos específicos: por exemplo, ao dobrar um retângulo ao meio, trabalhar a noção de eixo de simetria; ao construir um barco ou uma estrela, discutir áreas, frações e proporções; ao criar sólidos como o cubo ou a pirâmide, explorar volume e planificação de figuras espaciais. Os alunos podem registrar no caderno as propriedades geométricas observadas em cada modelo, promovendo a conexão entre a prática manual e a formalização matemática.

Para ampliar a experiência, algumas atividades poderão ser realizadas em grupo, onde cada equipe constrói uma figura e depois explica quais conceitos geométricos foram aplicados. Outra possibilidade é organizar desafios, como criar formas específicas apenas com determinadas dobras, estimulando a resolução de problemas. Ao final, pode-se promover uma exposição das produções, mostrando como a Matemática e a arte dialogam por meio do origami. Essa abordagem não apenas fortalece os conteúdos geométricos, mas também torna as aulas mais interativas, colaborativas e significativas.

Metodologias ativas no ensino de ângulos.

Palestrante: Jonas Thafarel Rodrigues Hernandes Beluco
Secretaria Estadual da Educação
EE Maria Judita Savioli de Oliveira e Etec Prof. Dr. José Daginoni.

Data: 27/09
Horário: das 16:45 às 17:30 horas

Local: Auditório do DM

Resumo: Este trabalho foi realizado com foco no objeto de conhecimento ângulos, para uma turma de sétimo ano do ensino fundamental II. Um primeiro momento, realizamos uma an ́alise dos dados gerados pela prova paulista, onde foi possível identificar uma defasagem muito significativa no descritor: ”Resolver situações-problemas envolvendo medidas de ângulos”. Partimos então, para uma avaliação diagnóstica, com o objetivo de decidir as aproximações e intervenções com a turma. As questões foram previamente selecionadas e organizadas para avaliar o objeto do conhecimento ângulo em diferentes contextos. Após a aplicação, foi realizada a correção de cada uma das questões e tabulação dos resultados. Consideramos importante apresentar aos alunos, os ângulos associados a giros de 1/4 volta, 1/2 volta, 3/4 volta e uma volta, com atividades de sensibilização, contextualizadas com o esporte, mão na massa, relógios, direção de veículos, casa dos ângulos (material do GeoGebra), sem falar nas questões conceituais do material digital. Além disso, foi trabalhado com bastante intensidade a gamificação usando a plataforma Matific, essas atividades serão aqui descritas e evidenciadas. Após todas as tarefas propostas aos estudantes, elaboramos uma avaliação final com algumas questões inéditas e outras já avaliadas com o objetivo de confrontar os dados iniciais e analisar a evolução da aprendizagem dos estudantes.

Matemática em jogo: como atividades lúdicas transformam o ensino de potenciação e logaritmos.

Apresentadora: Cristiane Janasi Albieri
Programa de Pós-Graduação em Ensino de Ciências

Data: 27/09
Horário: das 09:00 às 11:00 horas

Local: Saguão 
do DM

Resumo: A utilização de jogos matemáticos na sala de aula tem se mostrado uma estratégia pedagógica eficaz para despertar o interesse e a participação ativa dos estudantes em conteúdos que, muitas vezes, são considerados complexos ou pouco atrativos. A experiência relatada com o ensino de potenciação e logaritmos evidenciou a diferença significativa no engajamento dos alunos quando a metodologia tradicional foi substituída ou complementada por atividades lúdicas. Os jogos proporcionaram um ambiente dinâmico e motivador, favorecendo a interação entre os estudantes, a construção coletiva do conhecimento e o desenvolvimento do raciocínio lógico. Além disso, a diversificação metodológica assume um papel fundamental no processo de ensino-aprendizagem, uma vez que possibilita diferentes estilos e ritmos de aprendizagem, ampliando a compreensão dos conteúdos matemáticos. Dessa forma, a aplicação de jogos matemáticos integrada à diversificação de recursos pedagógicos apresenta-se como um recurso valioso para transformar a percepção dos discentes em relação à Matemática, tornando-a mais acessível, prazerosa e significativa no processo de ensino-aprendizagem e formação integral dos estudantes.

Modelagem Matemática: uma experiência na escola.

Palestrante: Aparecido Cavalcante de Souza
Secretaria Estadual da Educação - EE Brasílio Macahado

Data: 27/09
Horário: das 16:00 às 16:45 horas

Local: Auditório do DM

Resumo: Este trabalho teve, como objeto de estudo, o uso da Modelagem Matemática para o ensino e aprendizagem de equações do 1o grau na Educação Básica. O objetivo principal foi, por meio da realização de uma alternativa pedagógica de ensino usando modelagem matemática, abordar o conceito de equações em uma experiência na escola. A proposta foi planejar, desenvolver, realizar e analisar essa alternativa de ensino com alunos do 8o ano do Ensino Fundamental Anos Finais de uma escola pública de uma cidade do interior de São Paulo. Optou-se pela modelagem matemática como metodologia de trabalho pois ela consegue, por meio de um problema proposto pelos alunos, levá-los a refletir sobre as possibilidades de sua resolução e suas implicações com a matemática. Como a matemática se faz presente em vários ambientes da escola, os alunos optaram por explorar a Merenda Escolar. A partir de informações e os dados que foram coletados pelos alunos, por meio de questões propostas previamente e suas respostas, percebeu-se que a maioria entendeu o que é uma equação do 1o grau e sua resolução, pois cada grupo descreveu, com suas palavras e sem usar um rigor matemático, o tema equação de 1o grau.

© 2018 Graduação em Matemática - UFSCar - Rod. Washington Luís, Km 235 - São Carlos, SP - Brasil - 13565-905