Norm resolvent approximation of thin homogeneous tubes by heterogeneous ones

César R. de Oliveira and Alessandra A. Verri
Departamento de Matemática – UFSCar, São Carlos, SP, 13560-970 Brazil

July 18, 2016

Abstract

We study the operator $-\text{div}(A(x)\nabla\psi(x))$ restricted to a waveguide $\Omega_\varepsilon \subset \mathbb{R}^3$, with heterogeneous function $A(x)$ constant in the longitudinal direction. The purpose is to obtain an effective operator, in the norm resolvent sense, when the diameter of Ω_ε tends to zero with heterogeneity approaching a homogeneous situation (i.e., a constant function A). The effective operator presents a potential that, besides the traditional dependence on waveguide geometric properties, there is also a contribution from $A(x)$ which results, when combined with the curvature, for example, in the possibility of a repulsive interaction.

1 Introduction

Let $I = (a, b)$ be an open interval of \mathbb{R}; the cases $a = -\infty$ and/or $b = +\infty$ are included. Let $r : I \to \mathbb{R}^3$ be a curve of class C^3 parametrized by its arc-length parameter s. Denote by $k(s)$ and $\tau(s)$ its curvature and torsion at the point $r(s)$, respectively. Pick S an open, bounded and connected subset of \mathbb{R}^2 with “transverse” coordinates $y = (y_1, y_2)$; we require that $0 \in S$. We build a tube (waveguide) in \mathbb{R}^3 by properly moving the region S along $r(s)$; at each point $r(s)$ the cross-section region S may present a (continuously differentiable) rotation angle $\alpha(s)$ (see details in Section 2). We demand that the functions $k(s), (\tau + \alpha'(s)), (\tau + \alpha')' \in L^\infty(I)$.

Given $\varepsilon > 0$, denote by Ω_ε the waveguide generated by the cross-section εS. Let $A : \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. The purpose of this paper is study the (Dirichlet) operator

$$\psi(x) \mapsto -\text{div} (A(x)\nabla\psi(x)), \quad \psi \in H^2(\Omega_\varepsilon) \cap H^1_U(\Omega_\varepsilon),$$

and to find an effective operator in the limit $\varepsilon \to 0$ for particular choices of the function A; the latter characterizes the heterogeneity of the waveguide. Here, $\nabla\psi$ denotes the gradient vector of ψ in Ω_ε. Since the sequence of tubes Ω_ε “approaches” the curve $r(s)$, as $\varepsilon \to 0$, it is expected that the effective operator could be identified with a one-dimensional operator in $L^2(I)$.
The most studied situation is of a homogeneous tube, which may be characterized by a constant function \(A(x) = 1 \); ahead we review some relevant results in this situation. The case of strongly heterogeneous tubes has also been considered, that is, \(A(x) = \tilde{a}(y/\varepsilon) \), where \(\tilde{a} : \mathbb{R}^2 \to \mathbb{R} \) is a periodic function and \(y = (y_1, y_2) \) are the variables in the transverse section \(S \). More specifically, in \([8]\) the authors analyze the interaction between thickness \(\varepsilon \) and axial \(\delta \)-periodic heterogeneities as both \(\varepsilon \) and \(\delta \) tend to zero, for bounded \(A \) depending only on one of the transverse variables and in the three possible regimes: \(\varepsilon \ll \delta, \varepsilon \gg \delta \) and \(\varepsilon \approx \delta \) (such work is a counterpart of \([7]\) that has considered a 3D-2D reduction). See also \([12]\) for spectral analysis in related thin heterogeneous tubes, for bounded and uniformly coercive \(A \) depending now on the two transverse coordinates; by applying the \(\Gamma \)-convergence technique, it was found that the results depend critically on the choice of the (above) regime considered. In \([2, 14]\) the homogenization, also under coerciveness of \(A \) and other conditions, is studied in any dimension and different techniques. Other related works can be traced through the cited references.

However, here we are interested in a simpler question, that is, whether there is any nontrivial contribution when one approaches thin homogeneous tubes from heterogeneous ones; more specifically, we roughly consider a nonconstant function \(A(\varepsilon y) \) of the transverse coordinates and with differentiable coefficients (see precise details ahead), so that as \(\varepsilon \to 0 \) the homogeneous case is recovered due to the formal approximation \(A(\varepsilon y) \approx A(0) = 1 \). In fact, as discussed ahead, this process presents a contribution to effective operators and, when combined with curvature, repulsive and attractive potentials may arise.

Now we comment on the homogeneous case \(A(x) = 1 \), i.e.,

\[\psi(x) \mapsto -\Delta \psi(x), \quad \psi \in H^2(\Omega_\varepsilon) \cap H^1_0(\Omega_\varepsilon), \tag{2} \]

where \(\Delta \) denote the Laplacian operator in \(\Omega_\varepsilon \). This situation was studied in several works \([3, 4, 5, 6, 9, 10]\). Note that, as \(\varepsilon \to 0 \), the region \(\Omega_\varepsilon \) becomes narrower and the whole spectrum of \(-\Delta \) diverges. To control this kind of divergence the following strategy is usual. Let \(\lambda_0 \) be the first (i.e., the lowest) eigenvalue of the Dirichlet Laplacian \(-\Delta_y \) restricted to \(S \) and \(u_0 \) the (positive) associated normalized eigenfunction, that is,

\[-\Delta_y u_0 = \lambda_0 u_0, \quad u_0 \in H^1_0(S), \quad \lambda_0 > 0, \quad \int_S |u_0|^2 \, dy = 1. \]

In order to obtain a meaningful spectral convergence, one needs to subtract \((\lambda_0/\varepsilon^2)1\) from \((2) \); \(1 \) denotes the identity operator. Thus, the operator turns out to be

\[\psi(x) \mapsto - (\Delta \psi)(x) - \frac{\lambda_0}{\varepsilon^2} \psi(x), \quad \psi \in H^2(\Omega_\varepsilon) \cap H^1_0(\Omega_\varepsilon). \tag{3} \]

Put

\[V(s) := C(S)(\tau + \alpha')^2(s) - \frac{k^2(s)}{4}, \quad s \in I, \tag{4} \]

where \(R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) and \(C(S) := \int_S |(\nabla_y u_0, Ry)|^2 \, dy \). Consider the one-dimensional self-adjoint operator

\[(Tw)(s) = -w''(s) + V(s)w(s), \quad w \in H^2(I) \cap H^1_0(I). \]
Let $\mathcal{L} := \{w(s)u_0(y) : w \in L^2(I)\}$ be a closed subspace of $L^2(I \times S)$ and denote by 0 the null operator on its orthogonal complement \mathcal{L}^\perp. One has

$$-\Delta - \frac{\lambda_0}{\varepsilon^2} 1 \approx T \oplus 0, \quad \varepsilon \to 0,$$

i.e., T is the effective operator in this situation. The approximation (5) was proved in different aspects. In particular, for bounded tubes, in [3] the authors have used the Γ-convergence technique to obtain T as effective operator and to find an asymptotic behavior of the eigenvalues of $-\Delta$. In [6], where unbounded tubes were considered, the approximation in (5) was proven in the norm resolvent sense; the technique used there comes from [10].

Our goal in this work is to obtain an approximation in the norm resolvent sense for the operator (1) under suitable conditions on nonconstant $A(x)$. Namely, we suppose that there exists a coercive and C^2 function $a : S \to \mathbb{R}$, that is, $a(y) \geq r > 0$, for all y, so that the resulting operator is elliptic and

$$A_\varepsilon(s, y) := (A \circ f_\varepsilon)(s, y) = a(\varepsilon y), \quad \forall (s, y) \in I \times S,$$

where f_ε is the natural diffeomorphism given by (10) in Section 2. This condition implies that the heterogeneity $A \circ f_\varepsilon$ is constant in the longitudinal direction and, in particular, without loss it is assumed that $A(r(s)) = a(0) = 1$, for all $s \in I$. We will see that the effective operator in this situation presents an additional potential which comes from a derivative of A, i.e., the variation of the heterogeneity at the reference curve.

Given $\varepsilon > 0$, consider the following eigenvalue equation in the cross-section S:

$$-\text{div} (a(\varepsilon y) \nabla_y u) = \lambda u, \quad u \in H^2(S) \cap H^1_0(S).$$

Denote by λ_0^ε the first eigenvalue of the operator and by u_0^ε the corresponding eigenfunction. In particular, $\lambda_0^\varepsilon \to \lambda_0$ and $u_0^\varepsilon \to u_0$ in $L^2(S)$, as $\varepsilon \to 0$. As a consequence, for all $\varepsilon > 0$ small enough, $\lambda_0^\varepsilon > 0$ and it is a simple eigenvalue; see Section 3 for more details.

We then pass to study the sequence of operators

$$\psi(x) \mapsto -\text{div}(A(x) \nabla \psi(x)) - \frac{\lambda^\varepsilon_0}{\varepsilon^2} \psi(x), \quad \psi \in H^2(\Omega_\varepsilon) \cap H^1_0(\Omega_\varepsilon).$$

Let

$$z_\alpha(s) := (\cos \alpha(s), -\sin \alpha(s)), \quad V_\alpha(s) := -\frac{k(s)}{2} \langle (\nabla_y a)(0), z_\alpha(s) \rangle,$$

where ∇_y denotes the gradient vector in S.

Define the one-dimensional operator

$$(Tw)(s) := -w''(s) + V(s)w(s) + V_\alpha(s)w(s), \quad \text{dom } T = H^2(I) \cap H^1_0(I).$$

Let U_ε and V_ε be the unitary operators given, respectively, by (11) and (12) in Section 2. The main result of this work is
Theorem 1. As $\varepsilon \to 0$, one has
\[
\left\|V_\varepsilon U_\varepsilon \left(\begin{array}{c}
\frac{\partial}{\partial x} - \frac{\lambda_0}{\varepsilon^2} I + \frac{1}{\varepsilon} \frac{\partial}{\partial y_1} \nabla \end{array}\right)^{-1}
\right\| - \left[T^{-1} \oplus 0 \right] \to 0,
\] (7)
where 0 is the null operator on the subspace L^\perp.

Remark 1. If $(\alpha + \alpha') = 0$, for all $s \in I$, (7) follows directly by Theorem 4 in Section 5. Otherwise, we need an additional step; see Section 3 and Lemma 1 in Section 6.

In the homogeneous case $A(x) = 1$ for all x, it is known (and we see from (4)) that the bending property (i.e., nonzero curvature) generates an attractive interaction $-k^2/4$ whereas the twisting property (i.e., $\tau + \alpha' \neq 0$) a repulsive one [13]. However, we see that the approximation by the heterogeneous case (1) may have important consequences. For example, suppose Ω_ε is a planar bent and nontwisted tube with $k \neq 0$ and $\tau = \alpha = 0$. In this case the effective operator is
\[
(Tw)(s) = -w''(s) - \left(\frac{k^2(s)}{4} + \frac{\partial a}{\partial y_1}(0) \frac{k(s)}{2} \right) w(s).
\]
Suppose the local variation $(\partial a/\partial y_1)(0) < 0$; if either the curvature $k(s)$ is small enough or the absolute value of such variation is large, then $A(x)$ combined with curvature gives a net repulsive contribution as $\varepsilon \to 0$.

This text is organized as follows. In Section 2 we discuss details of the standard tube Ω_ε construction and perform the change of variables necessary to study the operator (1); for example, straightening Ω_ε. In Section 3 we study the operator restricted to the cross-section S in order to control the divergent energies from the transverse spectrum of $-\Delta$, as $\varepsilon \to 0$. In Sections 4 and 5 we present some preliminary results to obtain Theorem 1. Finally, in Section 6, we show how to find the effective operator T and conclude Theorem 1. Along the text the symbol K is used to denote different constants.

2 Geometry of the domain and change of coordinates

As already mentioned in the Introduction, let $I = (a, b)$, $-\infty \leq a < b \leq +\infty$, be an interval of \mathbb{R}. Let $r : I \to \mathbb{R}^3$ be a simple C^3 curve in \mathbb{R}^3 parametrized by its arc-length parameter s. The curvature of r at the position s is $k(s) := \|r''(s)\|$. We choose the usual orthonormal triad of vector fields $\{T(s), N(s), B(s)\}$, the so-called Frenet frame, given the tangent, normal and binormal vectors, respectively, moving along the curve and defined by
\[
T = r'; \quad N = k^{-1} T'; \quad B = T \times N.
\] (8)
To justify the construction (8), it is assumed that $k \neq 0$, but if r has a piece of a straight line (i.e., $k = 0$ identically in this piece), usually one can choose a constant
Frenet frame instead. It is possible to combine constant frames with the Frenet frame (8) and so obtaining a global C^2 Frenet frame; see [11], Theorem 1.3.6. In each situation we assume that a global Frenet frame exists and that the Frenet equations are satisfied, that is,

$$
\begin{pmatrix}
T' \\
N' \\
B'
\end{pmatrix} =
\begin{pmatrix}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{pmatrix}
\begin{pmatrix}
T \\
N \\
B
\end{pmatrix},
$$

(9)

where $\tau(s)$ is the torsion of $r(s)$, actually defined by (9). Choose $s_0 \in I$ and consider $\alpha : I \to \mathbb{R}$ a C^1 function so that $\alpha(s_0) = 0$. We suppose that $\tau + \alpha'$ is derivable and $(\tau + \alpha')' \in L^\infty(I)$. Let S be an open, bounded, connected and smooth (nonempty) subset of \mathbb{R}^2. For $\varepsilon > 0$ small enough and $y = (y_1, y_2) \in S$, write

$$
\tilde{x}(s, y) = r(s) + \varepsilon y_1 N_\alpha(s) + \varepsilon y_2 B_\alpha(s)
$$

and consider the domain

$$
\Omega_\varepsilon = \{ \tilde{x}(s, y) \in \mathbb{R}^3 : s \in I, y = (y_1, y_2) \in S \},
$$

where

$$
N_\alpha(s) := \cos \alpha(s) N(s) + \sin \alpha(s) B(s),
$$

$$
B_\alpha(s) := -\sin \alpha(s) N(s) + \cos \alpha(s) B(s).
$$

Hence, this tube Ω_ε is obtained by putting the region εS along the curve $r(s)$, which is simultaneously rotated by an angle $\alpha(s)$ with respect to the cross section at the position $r(s)$.

Now, consider the sequence of operators defined by (1) in Introduction. Our technique corresponds to the study of the sequence of the corresponding quadratic forms. Namely,

$$
\tilde{b}_\varepsilon(\tilde{\psi}) := \int_{\Omega_\varepsilon} A(x) |\nabla \tilde{\psi}|^2 dx, \quad \text{dom } \tilde{b}_\varepsilon = H_0^1(\Omega_\varepsilon).
$$

We perform a change of variables so that the region Ω_ε turns to be a straight cylinder $I \times S$. For this, consider the mapping

$$
f_\varepsilon : I \times S \to \Omega_\varepsilon
$$

$$
(s, y) \mapsto r(s) + \varepsilon y_1 N_\alpha(s) + \varepsilon y_2 B_\alpha(s).
$$

(10)

The price to be paid is a nontrivial Riemannian metric $G = G_\varepsilon$ which is induced by f_ε, i.e.,

$$
G = (G_{ij}), \quad G_{ij} = \langle e_i, e_j \rangle = G_{ji}, \quad 1 \leq i, j \leq 3,
$$

where

$$
e_1 = \frac{\partial f_\varepsilon}{\partial s}, \quad e_2 = \frac{\partial f_\varepsilon}{\partial y_1}, \quad e_3 = \frac{\partial f_\varepsilon}{\partial y_2}.
$$

Some calculations show that in the Frenet frame

$$
J = \begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix} = \begin{pmatrix}
\beta_\varepsilon & -\varepsilon(\tau + \alpha') \langle z_\alpha^1, y \rangle & \varepsilon(\tau + \alpha') \langle z_\alpha, y \rangle \\
0 & \varepsilon \cos \alpha & \varepsilon \sin \alpha \\
0 & -\varepsilon \sin \alpha & \varepsilon \cos \alpha
\end{pmatrix},
$$

5
where
\[\beta_\varepsilon(s, y) = 1 - \varepsilon k(s) (z_\alpha, y), \quad z_\alpha = (\cos \alpha, -\sin \alpha), \quad \text{and} \quad z_\perp^\alpha = (\sin \alpha, \cos \alpha). \]

The inverse matrix of \(J \) is given by
\[
J^{-1} = \begin{pmatrix}
\frac{1}{\beta_\varepsilon} (\tau + \alpha') y_2 / \beta_\varepsilon & - (\tau + \alpha') y_1 / \beta_\varepsilon \\
0 & (1/\varepsilon) \cos \alpha \\
0 & (1/\varepsilon) \sin \alpha
\end{pmatrix}.
\]

Note that \(JJ' = G \) and \(\det J = |\det G|^{1/2} = \varepsilon^2 \beta_\varepsilon. \) Since \(k \) is a bounded function, for \(\varepsilon \) small enough \(f_\varepsilon \) does not vanish in \(I \times S \). Thus, \(\beta_\varepsilon > 0 \) and \(f_\varepsilon \) is a local diffeomorphism. In case \(f_\varepsilon \) is injective (again by requiring that \(\varepsilon > 0 \) is small), a global diffeomorphism is obtained.

Introducing the notation
\[
\| \hat{\psi} \|^2_G := \int_{I \times S} |\hat{\psi}|^2 \beta_\varepsilon(s, y) ds dy,
\]
and the unitary transformation
\[
U_\varepsilon : L^2(\Omega_\varepsilon) \rightarrow L^2(I \times S, \beta_\varepsilon(s, y) ds dy) \quad \mapsto \quad \varepsilon \hat{\psi} \circ f_\varepsilon,
\]
we obtain the quadratic form
\[
\hat{b}_\varepsilon(U_\varepsilon \hat{\psi}) = \| \sqrt{a_\varepsilon(\varepsilon y)} J^{-1} \nabla (U_\varepsilon \hat{\psi}) \|^2_G, \quad \text{dom } \hat{b}_\varepsilon = H^1_0(I \times S).
\]

Recall the condition (6) in Introduction; there exists a positive and \(C^2 \) function \(a : S \rightarrow \mathbb{R} \) so that \((A \circ f_\varepsilon)(s, y) = a(\varepsilon y)\), for all \((s, y) \in I \times S\).

We denote \(\hat{\psi} := U_\varepsilon \tilde{\psi} \) and, to simplify the notation, sometimes we write \(a_\varepsilon(y) := a(\varepsilon y) \). Thus,
\[
\hat{b}_\varepsilon(\hat{\psi}) = \| \sqrt{a_\varepsilon(\varepsilon y)} J^{-1} \nabla \hat{\psi} \|^2_G
= \int_{I \times S} \frac{a_\varepsilon}{\beta_\varepsilon} \hat{\psi}' + \langle \nabla_y \hat{\psi}, R_y \rangle (\tau + \alpha)' \|^2 ds dy
+ \int_{I \times S} \frac{a_\varepsilon \beta_\varepsilon}{\varepsilon^2} |\nabla_y \hat{\psi}|^2 ds dy,
\]
\[\text{dom } \hat{b}_\varepsilon = H^1_0(I \times S). \]

Recall that \(R \) is the rotation matrix that appears after (4). Note that \(\text{dom } \hat{b}_\varepsilon \) is a subspace of the Hilbert space \(L^2(I \times S, \beta_\varepsilon ds dy) \). The measure \(\beta_\varepsilon ds dy \) comes from of the Riemannian metric obtained from the change of variables \(f_\varepsilon \).

Now, we consider a change of variables so that we can work in the Hilbert space \(L^2(I \times S) \) with the usual measure. Define the isometry
\[
V_\varepsilon : L^2(I \times S, \beta_\varepsilon(s, y) ds dy) \rightarrow L^2(I \times S) \quad \mapsto \quad \beta_\varepsilon^{1/2} \hat{\psi},
\]
\[\text{dom } V_\varepsilon = \beta_\varepsilon^{1/2} H^1_0(I \times S), \]
\[\text{dom } V_\varepsilon = H^1_0(I \times S). \]
and denote $\psi := V_2 \hat{\psi}$. With this change, the quadratic form $\tilde{b}_e(\hat{\psi})$ becomes

$$\tilde{b}_e(\psi) = \int_{I \times S} \frac{a_e}{\beta_e} \left| \psi' - \frac{\psi \partial \beta_e}{2 \partial S} \frac{1}{\beta_e} + \left(\langle \nabla_y \psi, R_y \rangle + \psi \beta_e^{1/2} \langle \nabla_y \left(1/\beta_e^{1/2} \right), R_y \rangle \right) (\tau + \alpha')(s) \right|^2 \, ds \, dy + \int_{I \times S} \frac{a_e \beta_e}{\varepsilon^2} \left| \nabla_y \left(\psi / \beta_e^{1/2} \right) \right|^2 \, ds \, dy,$$

dom $\tilde{b}_e = H^1_0(I \times S)$.

We draw attention to the last integral in the expression of $\tilde{b}_e(\psi)$. For this term we present more details of the change of variables (12).

Some calculations show that

$$\int_{I \times S} \frac{a_e \beta_e}{\beta_y} \left(\frac{\partial}{\partial y_1} \left(\psi \beta_e^{-1/2} \right) \right)^2 \, ds \, dy = \int_{I \times S} \frac{a_e \beta_e}{\beta_y} \left(\frac{\partial \psi}{\partial y_1} \beta_e^{-1/2} - \frac{\partial \beta_e}{\partial y_1} \frac{\psi}{\beta_e^{3/2}} \right)^2 \, ds \, dy$$

$$= \int_{I \times S} \frac{a_e \beta_e}{\beta_y} \left[\left(\frac{\partial \psi}{\partial y_1} \right)^2 \beta_e^{-1} - \beta_e^{-2} \frac{\partial \beta_e}{\partial y_1} \frac{\partial \psi}{\partial y_1} + \beta_e^{-3} \left(\frac{\partial \beta_e}{\partial y_1} \right)^2 \psi^2 \right] \, ds \, dy$$

$$= \int_{I \times S} \left[a_e \left(\frac{\partial \psi}{\partial y_1} \right)^2 - \frac{1}{4} a_e \beta_e^{-2} \varepsilon^2 k^2(s) \cos^2 \alpha(s) \psi^2 - \frac{\varepsilon^2}{2} \beta_e^{-1} \frac{\partial a}{\partial y_1} (\varepsilon y) k(s) \cos \alpha(s) \psi^2 \right] \, ds \, dy.$$

In these passages, we have performed an integration by parts to obtain

$$- \int_{I \times S} \frac{a_e \beta_e}{\beta_y} \frac{\partial \psi}{\partial y_1} \psi \, ds \, dy = - \frac{1}{2} \int_{I \times S} \frac{a_e \beta_e}{\beta_y} \frac{\partial \psi}{\partial y_1} \psi \, ds \, dy$$

$$= - \int_{I \times S} \left(\frac{\varepsilon^2}{2} \beta_e^{-1} \frac{\partial a}{\partial y_1} (\varepsilon y) k(s) \cos \alpha(s) \psi^2 + a_e \beta_e^{-2} \varepsilon^2 k^2(s) \cos^2 \alpha(s) \psi^2 \right) \, ds \, dy.$$

Similarly, one can show

$$\int_{I \times S} \frac{a_e \beta_e}{\beta_y} \left(\frac{\partial}{\partial y_2} \left(\psi \beta_e^{-1/2} \right) \right)^2 \, ds \, dy$$

$$= \int_{I \times S} \left[a_e \left(\frac{\partial \psi}{\partial y_2} \right)^2 - \frac{1}{4} a_e \beta_e^{-2} \varepsilon^2 k^2(s) \sin^2 \alpha(s) \psi^2 + \frac{\varepsilon^2}{2} \beta_e^{-1} \frac{\partial a}{\partial y_2} (\varepsilon y) k(s) \sin \alpha(s) \psi^2 \right] \, ds \, dy.$$

Thus,

$$\int_{I \times S} \frac{a_e \beta_e}{\varepsilon^2} \left| \nabla_y \left(\psi / \beta_e^{1/2} \right) \right|^2 \, ds \, dy$$

$$= \int_{I \times S} \left[\frac{a_e}{\varepsilon^2} \nabla_y \psi^2 - \frac{\beta_e^{-2} k^2(s) |\psi|^2}{4} - \frac{\beta_e^{-1}}{2} \left(\langle \nabla_y a(\varepsilon y), z_{\alpha(s)}(k(s)|\psi|^2 \rangle \right) \, ds \, dy,$$

and the quadratic form $\tilde{b}(\psi)$ becomes

$$\tilde{b}_e(\psi) = \int_{I \times S} \frac{a_e}{\beta_e} \left| \psi' - \frac{\psi \partial \beta_e}{2 \partial S} \frac{1}{\beta_e} + \left(\langle \nabla_y \psi, R_y \rangle + \psi \beta_e^{1/2} \langle \nabla_y \left(1/\beta_e^{1/2} \right), R_y \rangle \right) (\tau + \alpha')(s) \right|^2 \, ds \, dy + \int_{I \times S} \frac{a_e}{\beta_e} \left| \nabla_y \psi^2 - \frac{\beta_e^{-2} k^2(s) |\psi|^2}{4} - \frac{\beta_e^{-1}}{2} \left(\langle \nabla_y a(\varepsilon y), z_{\alpha(s)}(k(s)|\psi|^2 \rangle \right) \, ds \, dy,$$

dom $\tilde{b}_e = H^1_0(I \times S)$.

7
The cross section problem

The purpose of this section is to find a way to control the second integral in the definition of \(\bar{b}_\varepsilon(\psi) \) above.

As a strategy, we study the (elliptic) eigenvalue problem

\[
-\text{div}(a(\varepsilon y)\nabla y u) = \lambda u, \quad u \in H^1_0(S) \cap H^2(S).
\]

For each \(\varepsilon > 0 \), consider the self-adjoint operator \(D_\varepsilon u := -\text{div}(a(\varepsilon y)\nabla y u) \), \(\text{dom} D_\varepsilon = H^1_0(S) \cap H^2(S) \). Each \(D_\varepsilon \) has compact resolvent and is bounded from below; so the spectrum \(\sigma(D_\varepsilon) \) is purely discrete. Denote by \(\lambda^n_\varepsilon \) the \(n \)-th eigenvalue of \(D_\varepsilon \) counted with multiplicity and \(u^n_\varepsilon(y) \) the corresponding normalized eigenfunction. Namely,

\[-\text{div}(a(\varepsilon y)\nabla y u^n_\varepsilon) = \lambda^n_\varepsilon u^n_\varepsilon, \quad 0 \leq \lambda^0_\varepsilon \leq \lambda^1_\varepsilon \leq \lambda^n_\varepsilon, \quad \lambda^n_\varepsilon \to \infty \ (n \to \infty). \tag{13} \]

Now, consider the auxiliary eigenvalue problem

\[-\Delta_y u = \lambda u, \quad u \in H^1_0(S) \cap H^2(S). \]

Recall \(-\Delta_y \) is the Dirichlet Laplacian operator restricted to \(S \). Denote by \(\lambda_n \) the \(n \)-th eigenvalue of \(-\Delta_y \) counted with multiplicity and \(u_n(y) \) the corresponding normalized eigenfunction. We have

\[-\Delta_y u_n = \lambda_n u_n, \quad 0 < \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots, \quad \lambda_n \to \infty \ (n \to \infty). \]

The geometry of \(S \) ensures that \(\lambda_0 \) is simple.

Since \(a \) is a \(C^2 \) function, there exists \(K > 0 \), so that,

\[|a(\varepsilon y) - 1| \leq K \varepsilon, \quad \forall y \in S, \tag{14} \]

for all \(\varepsilon > 0 \) small enough.

Theorem 2. There exists \(K > 0 \), so that, for all \(\varepsilon > 0 \) small enough,

\[\| (D_\varepsilon + \xi 1)^{-1} - (D + \xi 1)^{-1} \| \leq K \varepsilon, \]

for all \(\xi > 0 \).

Proof. Consider the quadratic forms

\[d_\varepsilon(u) = \int_S a(\varepsilon y)|\nabla_y u|^2 \, dy, \quad d(u) = \int_S |\nabla_y u|^2 \, dy, \]

\(\text{dom} d_\varepsilon = \text{dom} d = H^1_0(S) \), associated to \(D_\varepsilon \) and \(-\Delta_y \), respectively.

Since \(D_\varepsilon \) and \(-\Delta_y \) are positive operators, given \(\xi > 0, -\xi \in \rho(D_\varepsilon), \rho(-\Delta_y) \), i.e., \(\xi \) belongs to the resolvent set of these operators. Thus, for all \(\xi > 0 \) and for all \(u \in H^1_0(S) \),

\[|(d_\varepsilon + \xi)(u) - (d + \xi)(u)| = |d_\varepsilon(u) - d(u)| \leq \int_S |a(\varepsilon y) - 1||\nabla_y u|^2 \, dy \leq K \varepsilon (d + \xi)(u). \]

Now, the result follows by Theorem 3 in [1]. \(\square \)
As a consequence of this theorem, for each \(n \in \mathbb{N}_0 := \{0, 1, 2, 3, \cdots \} \),

(i) \(\lambda^n_\varepsilon \to \lambda_n \), as \(\varepsilon \to 0 \);

(ii) \(u^n_\varepsilon \to u_n \), in \(L^2(S) \), as \(\varepsilon \to 0 \).

Since \(\lambda_0 > 0 \), the condition (i) imply that \(\lambda^0_\varepsilon > 0 \) and is a simple eigenvalue, for all \(\varepsilon > 0 \) small enough.

Further, (i) and (ii) imply that, for each \(n \in \mathbb{N}_0 \),

(iii) \((\nabla u^n_\varepsilon)_\varepsilon \) is a bounded sequence in \(L^2(S) \).

In fact, just note that

\[
\int_S a(\varepsilon y)|\nabla u^n_\varepsilon|^2 \, dy = \lambda^n_\varepsilon. \tag{15}
\]

4 Reformulation of the problem

In case of collapsing homogeneous waveguides, it is known that the first eigenvalue diverges as \(\varepsilon^{-2} \) for small \(\varepsilon \in [3, 6] \) (see, e.g., equation (3)); since, by Section 3, the sequence \((\lambda^0_\varepsilon)_\varepsilon \) is bounded, a natural “renormalization” guess is to subtract \(\left(\lambda^0_\varepsilon/\varepsilon^2 \right) \int_{I \times S} |\psi|^2 \, ds \, dy \) from \(b_\varepsilon(\psi) \). This is a standard procedure to extract a meaningful limit of this very singular problem with the presence of regions that scale in different manners. We also add a constant \(c > \| - k^2(s)/4 + V_\varepsilon(s) \|_\infty \); this fact will be convenient later on to guarantee that zero is in the resolvent set of the related operators. Thus, we pass to study the quadratic form

\[
b_\varepsilon(\psi) := \overline{b}_\varepsilon(\psi) - \frac{\lambda^0_\varepsilon}{\varepsilon^2} \int_{I \times S} |\psi|^2 \, ds \, dy + c \int_{I \times S} |\psi|^2 \, ds \, dy \\
= \int_{I \times S} \frac{a_\varepsilon}{\varepsilon^2} |\psi|^2 - \psi \frac{\partial \beta_\varepsilon}{\partial x} \frac{1}{2} \partial_s \beta_\varepsilon + \langle \nabla_y \psi, R_y \rangle (\tau + \alpha')(s) \\
+ \psi \beta_\varepsilon^{1/2} \langle \nabla_y (1/\beta_\varepsilon^{1/2}), R_y \rangle (\tau + \alpha')(s) \bigg|^2 \, ds \, dy \\
+ \int_{I \times S} \frac{a_\varepsilon}{\varepsilon^2} \left(|\nabla_y \psi|^2 - \lambda^0_\varepsilon |\psi|^2 \right) \, ds \, dy - \int_{I \times S} \frac{1}{4 \beta_\varepsilon^2} k^2(s) |\psi|^2 \, ds \, dy \\
- \int_{I \times S} \frac{1}{2 \beta_\varepsilon} \langle \nabla_y a(\varepsilon y), z_{\alpha(s)} \rangle k(s)|\psi|^2 \, ds \, dy + c \int_{I \times S} |\psi|^2 \, ds \, dy,
\]

\(\text{dom } b_\varepsilon = H_0^1(I \times S) \). Denote by \(B_\varepsilon \) the self-adjoint operator associated with it.

To simplify the calculations we perform the following approximation. Consider the quadratic form

\[
h_\varepsilon(\psi) = \int_{I \times S} |\psi' + \langle \nabla_y \psi, R_y \rangle (\tau + \alpha')(s)|^2 \, ds \, dy \\
+ \int_{I \times S} \frac{a_\varepsilon}{\varepsilon^2} \left(|\nabla_y \psi|^2 - \lambda^0_\varepsilon |\psi|^2 \right) \, ds \, dy - \int_{I \times S} \frac{1}{4 \beta_\varepsilon^2} k^2(s) |\psi|^2 \, ds \, dy \\
- \int_{I \times S} \frac{1}{2 \beta_\varepsilon} \langle \nabla_y a(0), z_{\alpha(s)} \rangle k(s)|\psi|^2 \, ds \, dy + c \int_{I \times S} |\psi|^2 \, ds \, dy.
\]
dom $h_\varepsilon = H^1_0(I \times S)$, and denote by H_ε the self-adjoint operator associated with it.

Theorem 3. There exist $K > 0$ so that

$$\|B_\varepsilon^{-1} - H_\varepsilon^{-1}\| \leq K \varepsilon,$$

for all $\varepsilon > 0$ small enough.

The choice of c ensures that $0 \in \rho(B_\varepsilon) \cap \rho(H_\varepsilon)$, for all $\varepsilon > 0$ small enough. We have two considerations here. First, condition (14) implies that since a is a C^2 function,

$$\sup_y \|(\nabla y a)(\varepsilon y) - (\nabla y a)(0)\|_{R^2} \leq K \varepsilon,$$

for some $K > 0$. Second, $\beta_\varepsilon(s, y) \to 1$ uniformly as $\varepsilon \to 0$, and there exists $K > 0$ so that

$$\left\| \frac{\partial \beta_\varepsilon}{\partial s} \right\|_{\infty} \leq K \varepsilon, \quad \sup_{s, y} \|\nabla y (1/\beta_\varepsilon^{1/2})\|_{R^2} \leq K \varepsilon,$$

for $\varepsilon > 0$ small enough. Now, the proof of Theorem 3 is quite similar to proof of Theorem 3.1 in [4] and will not be presented here.

5 Reduction of dimension

Recall that u_0^ε is the eigenfunction associated with the first eigenvalue λ_0^ε of D_ε. Define the closed subspace $L_\varepsilon := \{w(s)u_0^\varepsilon(y) : w \in L^2(I)\}$ and consider the orthogonal decomposition

$$L^2(I \times S) = L_\varepsilon \oplus L^\perp_\varepsilon.$$

Thus, each $\psi \in L^2(I \times S)$ can be written as

$$\psi(s, y) = w(s)u_0^\varepsilon(y) + \eta_\varepsilon(s, y), \quad w \in L^2(I), \eta_\varepsilon \in L^\perp_\varepsilon. \quad (16)$$

Consider the positive one-dimensional quadratic form

$$t_\varepsilon(w) := h_\varepsilon(wu_0^\varepsilon), \quad \text{dom } t_\varepsilon = H^1_0(I).$$

Denote by T_ε the self-adjoint operator associated with it. In this case, $\text{dom } T_\varepsilon = H^2(I) \cap H^1_0(I)$.

Taking in count that

$$\int_S u_0^\varepsilon(\nabla y u_0^\varepsilon, Ry) \, dy = 0,$$

we have

$$t_\varepsilon(w) = \int_I \left\{ |w'|^2 + \left[C_\varepsilon(S)(\tau + \alpha')^2 - \frac{k^2(s)}{4} - \frac{k(s)}{2}(\langle \nabla y a(0), z_{\alpha(s)} \rangle + c) \right] |w|^2 \right\} \, ds,$$

where

$$C_\varepsilon(S) := \int_S |(\nabla y u_0^\varepsilon, Ry)|^2 \, dy.$$
Theorem 4. There exists $K > 0$, so that, for all $\varepsilon > 0$ small enough,

$$\|H_\varepsilon^{-1} - (T_\varepsilon^{-1} \oplus 0)\| \leq K \varepsilon,$$

where 0 is the null operator on the subspace L^\perp_ε.

Proof. Due to the decomposition (16), for $\psi \in \text{dom } h_\varepsilon$,

$$\psi(s, y) = w(s) u_\varepsilon^0(y) + \eta_\varepsilon(s, y), \quad w \in H^0_0(I), \quad \eta_\varepsilon \in \text{dom } h_\varepsilon \cap L^\perp_\varepsilon.$$

Thus, $h_\varepsilon(\psi)$ can be rewritten as

$$h_\varepsilon(\psi) = t_\varepsilon(w) + h_\varepsilon(wu_\varepsilon^0, \eta_\varepsilon) + h_\varepsilon(\eta_\varepsilon, wu_\varepsilon^0) + h_\varepsilon(\eta_\varepsilon).$$

We need to check that there are $c_0 > 0$ and functions $0 \leq q(\varepsilon), 0 \leq p(\varepsilon)$ and $c(\varepsilon)$ so that $t_\varepsilon(w), h_\varepsilon(\eta_\varepsilon)$ and $h_\varepsilon(wu_\varepsilon^0, \eta_\varepsilon)$ satisfy the following conditions:

$$t_\varepsilon(w) \geq c(\varepsilon)\|wu_\varepsilon^0\|_{L^2(I \times S)}^2, \quad \forall w \in \text{dom } t_\varepsilon, \quad c(\varepsilon) \geq c_0 > 0; \quad (17)$$

$$h_\varepsilon(\eta_\varepsilon) \geq p(\varepsilon)\|\eta_\varepsilon\|_{L^2(I \times S)}^2, \quad \forall \eta_\varepsilon \in \text{dom } h_\varepsilon \cap L^\perp_\varepsilon; \quad (18)$$

$$|h_\varepsilon(wu_\varepsilon^0, \eta_\varepsilon)|^2 \leq q(\varepsilon)^2 t_\varepsilon(w) h_\varepsilon(\eta_\varepsilon), \quad \forall \psi \in \text{dom } h_\varepsilon; \quad (19)$$

and with

$$p(\varepsilon) \to \infty, \quad c(\varepsilon) = O(p(\varepsilon)), \quad q(\varepsilon) \to 0 \quad \text{as } \varepsilon \to 0. \quad (20)$$

Under these conditions, Proposition 3.1 in [10] guarantees that, for $\varepsilon > 0$ small enough, we have for the operator norm

$$\|H_\varepsilon^{-1} - (T_\varepsilon^{-1} \oplus 0)\| \leq p(\varepsilon)^{-1} + K q(\varepsilon) c(\varepsilon)^{-1},$$

for some $K > 0$.

Clearly, $t_\varepsilon(w) \geq c\|w\|_{L^2(I)}^2 = c\|wu_\varepsilon^0\|_{L^2(I \times S)}$, for all $w \in \text{dom } t_\varepsilon$. Take $c(\varepsilon) := c$. By the Min-Max Principle,

$$\int_S (a_\varepsilon |\nabla_y \eta_\varepsilon|^2 - \lambda_\varepsilon^0 |\eta_\varepsilon|^2) \, dy \geq (\lambda_\varepsilon^1 - \lambda_\varepsilon^0) \int_S |\eta_\varepsilon|^2 \, dy, \quad \forall \eta_\varepsilon \in \text{dom } h_\varepsilon \cap L^\perp_\varepsilon,$$

for a.e. s. Since $\lambda_\varepsilon^1 - \lambda_\varepsilon^0 \to \lambda_1 - \lambda_0 > 0$, as $\varepsilon \to 0$, there exists $K > 0$, so that,

$$\int_S (a_\varepsilon |\nabla_y \eta_\varepsilon|^2 - \lambda_\varepsilon^0 |\eta_\varepsilon|^2) \, dy \geq K \int_S |\eta_\varepsilon|^2 \, dy, \quad \forall \eta_\varepsilon \in \text{dom } h_\varepsilon \cap L^\perp_\varepsilon,$$

for all $\varepsilon > 0$ small enough and a.e. s. Thus,

$$h_\varepsilon(\eta_\varepsilon) \geq \frac{K}{\varepsilon^2} \int_{I \times S} |\eta_\varepsilon|^2 \, ds \, dy, \quad \forall \eta_\varepsilon \in \text{dom } h_\varepsilon \cap L^\perp_\varepsilon,$$

for all $\varepsilon > 0$ small enough. Just take $p(\varepsilon) := K/\varepsilon^2$.

Since $\eta_\varepsilon \in H^0_0(I \times S) \cap L^\perp_\varepsilon$,

$$\int_S \eta_\varepsilon(s, y) u_\varepsilon^0(y) \, dy = 0, \quad \text{a.e. } s,$$

11
and, consequently,
\[\int_S \eta'_\varepsilon(s,y)w_\varepsilon^0(y) \, dy = 0, \quad \text{a.e. } s. \]

These conditions and a integration by parts show that
\[h_\varepsilon(wu_\varepsilon^0, \eta_\varepsilon) \]
\[= \int_{I \times S} \left(w' u_\varepsilon^0 + w \langle \nabla y u_\varepsilon^0, Ry \rangle (\tau + \alpha')(s) \right) \left(\eta'_\varepsilon + \langle \nabla y \eta_\varepsilon, Ry \rangle (\tau + \alpha')(s) \right) \, ds \, dy \]
\[= \int_{I \times S} w' u_\varepsilon^0 \langle \nabla y \eta_\varepsilon, Ry \rangle (\tau + \alpha')(s) \, ds \, dy \]
\[- \int_{I \times S} (w' (\tau + \alpha')(s) + w (\tau + \alpha')(s)) \eta_\varepsilon \langle \nabla y u_\varepsilon^0, Ry \rangle \, ds \, dy \]
\[+ \int_{I \times S} w \langle \nabla y u_\varepsilon^0, Ry \rangle \langle \nabla \eta_\varepsilon, Ry \rangle (\tau + \alpha')^2(s) \, ds \, dy. \]

Now, note that there exists \(K > 0 \) so that,
\[\int_{I \times S} |\nabla \eta_\varepsilon|^2 \, ds \, dy \leq \sup_{y \in S} \left\{ \frac{1}{a(y)} \right\} \int_{I \times S} a(\varepsilon y)|\nabla \eta_\varepsilon|^2 \, ds \, dy \]
\[= \sup_{y \in S} \left\{ \frac{1}{a(y)} \right\} \left[\int_{I \times S} (a(\varepsilon y)|\nabla \eta_\varepsilon|^2 - \lambda_\varepsilon^0 |\eta_\varepsilon|^2) \, ds \, dy \right] \]
\[+ \lambda_\varepsilon^0 \int_{I \times S} |\eta_\varepsilon|^2 \, ds \, dy \]
\[\leq K \varepsilon^2 h_\varepsilon(\eta_\varepsilon), \]
for all \(\eta_\varepsilon \in \text{dom } h_\varepsilon \cap \mathcal{L}_\varepsilon^+, \) for all \(\varepsilon > 0 \) small enough. We also have \(\int_I |w'|^2 \, ds \leq t_\varepsilon(w), \)
\[\int_I |w|^2 \, ds \leq K t_\varepsilon(w), \]
for all \(w \in \text{dom } t_\varepsilon, \) and all \(\varepsilon > 0 \) small enough.

These inequalities, the conditions (i), (ii) and (iii) in Section 3 and (21), imply that
\[|h_\varepsilon(wu_\varepsilon^0, \eta_\varepsilon)| \leq K \varepsilon (t_\varepsilon(w))^{1/2} (h_\varepsilon(\eta_\varepsilon))^{1/2}, \]
for some \(K > 0, \) for all \(w \in \text{dom } t_\varepsilon, \) all \(\eta_\varepsilon \in \text{dom } h_\varepsilon \cap \mathcal{L}_\varepsilon^+ \) and all \(\varepsilon > 0 \) small enough.

Take \(q(\varepsilon) := K \varepsilon. \)

Since (17), (18), (19) and (20) are satisfied, the result follows. \(\square \)

6 Effective operator

In this section we show the convergence of the sequence \(T_\varepsilon \) in the norm resolvent sense as \(\varepsilon \to 0; \) the effective operator is found.

Define the quadratic form
\[t(w) = \int_I \left\{ |w'|^2 + \left[C(S)(\tau + \alpha')^2(s) - \frac{k^2(s)}{4} - \frac{k(s)}{2} \langle (\nabla y a)(0), z_{\alpha(s)} \rangle + c \right] |w|^2 \right\} \, ds, \]
dom \(t = H^1_0(I), \) and denote by \(T \) its associated self-adjoint operator. Namely,
\[(T w)(s) = -w''(s) + \left[C(S)(\tau + \alpha')^2(s) - \frac{k^2(s)}{4} - \frac{k(s)}{2} \langle (\nabla y a)(0), z_{\alpha(s)} \rangle + c \right] w(s), \]
dom $T = H^2(I) \cap H^1_0(I)$.

Note that if $(\tau + \alpha') = 0$, for all $s \in I$, then we have $T_\varepsilon = T$, for all $\varepsilon > 0$, and the conclusion of Theorem 1 follows. For the general case we shall make use of the following results:

Lemma 1. The sequence $\langle C_\varepsilon(S) \rangle_\varepsilon$ converges to $C(S)$, as $\varepsilon \to 0$.

Proof. Since $a(\varepsilon y) \to 1$ uniformly, by (i) and (15) in Section 3, we have $\int_S |\nabla_y u_\varepsilon^0|^2 \, dy \to \lambda_0$. Also in Section 3, the condition (iii) implies that any subsequence of $(\nabla_y u_\varepsilon^0)_\varepsilon$ has a weakly converging subsequence $(\nabla_y u_\varepsilon^0)_{\varepsilon'}$ with $\nabla_y u_\varepsilon^0 \rightharpoonup \nabla_y u_0$ in $L^2(S)$. Now we introduce a seminorm $\| \cdot \|$ on $L^2(S)$ as

$$\| \cdot \| := \left(\int_S |\langle \cdot, Ry \rangle|^2 \, dy \right)^{\frac{1}{2}},$$

and note that $C_\varepsilon^2(S) = [\nabla_y u_\varepsilon^0]$ and $C(S) = [\nabla_y u_0]$. Thus, by combining the just mentioned facts, we have

$$\left| C_\varepsilon^2(S) - C(S) \right|^2 = \left| [\nabla_y u_\varepsilon^0] - [\nabla_y u_0] \right|^2 \leq \left| [\nabla_y u_\varepsilon^0] - \nabla_y u_0 \right|^2$$

$$= \int_S \left(|\langle \nabla_y u_\varepsilon^0 - \nabla_y u_0, Ry \rangle|^2 \right) \, dy \leq D_S \int_S |\nabla_y u_\varepsilon^0 - \nabla_y u_0|^2 \, dy$$

$$= D_S \int_S \left(|\nabla_y u_\varepsilon^0|^2 + |\nabla_y u_0|^2 - 2\langle \nabla_y u_\varepsilon^0, \nabla_y u_0 \rangle \right) \, dy \xrightarrow{\varepsilon \to 0} D_S (\lambda_0 + \lambda_0 - 2\lambda_0) = 0,$$

where D_S is obtained from $|Ry| = |y|$ and the boundedness of S. Hence, $C_\varepsilon^2(S) \to C(S)$, as $\varepsilon \to 0$.

By repeating the above arguments, one sees that any subsequence of $(C_\varepsilon(S))_\varepsilon$ has a converging subsequence with the uniquely determined limit $C(S)$, and so Urysohn’s subsequence principle implies that $C_\varepsilon(S) \to C(S)$ as $\varepsilon \to 0$. \hfill \square

Proposition 1. There exist $K > 0$ and a function $s(\varepsilon) > 0$, so that, $s(\varepsilon) \to 0$, as $\varepsilon \to 0$, and

$$\| T_\varepsilon^{-1} - T^{-1} \| \leq K s(\varepsilon),$$

for all $\varepsilon > 0$ small enough.

Proof. Lemma 1 ensures that there exists $\tilde{s}(\varepsilon) > 0$, so that, $\tilde{s}(\varepsilon) \to 0$, as $\varepsilon \to 0$, and

$$|C_\varepsilon(S) - C(S)| \leq \tilde{s}(\varepsilon),$$

for all $\varepsilon > 0$ small enough. Thus, since $(\tau + \alpha') \in L^\infty(I)$, there exists $K > 0$, so that

$$|t_\varepsilon(w) - t(w)| \leq K \int_I |C_\varepsilon(S) - C(S)| \, |w|^2 \, ds \leq K \tilde{s}(\varepsilon) \int_I |w|^2 \, ds \leq K \tilde{s}(\varepsilon) \, t(w).$$

Take $s(\varepsilon) := (K/c)\tilde{s}(\varepsilon)$. The results follows by Theorem 3 of [1]. \hfill \square

The proof of Theorem 1 follows by combining Theorem 4 and Proposition 1.
Acknowledgments

We are grateful to the referee’s careful comments, particularly the use of Uryshon’s principle that led to an improvement of our main result. CRdO thanks the partial support by CNPq (Universal Project 41004/2014-8).

References

