- de Farias, Marcos A.; Kondo, Cezar I.; dos Santos Filho, José R. Periodic traveling wave solution for non-homogeneous BBM and KdVB equations. Nonlinear Anal. Real World Appl. 34 (2017), 563–573.
- de Andrade, Allan E. R.; Pergher, Pedro L. Q.; Ura, Sérgio T. ℤ2k-actions fixing a disjoint union of odd dimensional projective spaces. Bull. Belg. Math. Soc. Simon Stevin24 (2017), no. 4, 581–590.
- Hurtado, Elard Juárez; Miyagaki, Olímpio Hiroshi; Rodrigues, Rodrigo da Silva Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent. Milan J. Math. 85 (2017), no. 1, 71–102.
- Barostichi, R. F.; Ferra, I. A.; Petronilho, G. Global hypoellipticity and simultaneous approximability in ultradifferentiable classes. J. Math. Anal. Appl. 453 (2017), no. 1, 104–124.
- de Paiva, Francisco Odair; Rosa, Wallisom Neumann problems with resonance in the first eigenvalue. Math. Nachr. 290 (2017), no. 14-15, 2198–2206.
- de Oliveira, César R.; Romano, Renan G. Aharonov-Bohm effect without contact with the solenoid. J. Math. Phys. 58 (2017), no. 10, 102102, 11 pp.
- Bazao, V. R.; Carvalho, S. L.; de Oliveira, C. R. On the spectral Hausdorff dimension of 1D discrete Schrödinger operators under power decaying perturbations. Osaka J. Math. 54 (2017), no. 2, 273–285.
- de Oliveira, César R.; Monteiro, Wagner Generalized Kotani's trick for unitary operators.Rep. Math. Phys. 79 (2017), no. 2, 151–163.
- Desideri, Patricia E.; Pergher, Pedro L. Q. Involutions fixing many components: a small codimension phenomenon. J. Fixed Point Theory Appl. 19 (2017), no. 4, 3119–3126.
- Cotrim, Fabiana Santos; Vendrúscolo, Daniel The Nielsen Borsuk-Ulam number.Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 4,613–619.
- Guimarães, Mateus Balbino; da Silva Rodrigues, Rodrigo Existence of solution for a Kirchhoff type system with weight and nonlinearity involving a (p,q)-superlinear term and critical Caffarelli-Kohn-Nirenberg growth. Topol. Methods Nonlinear Anal. 49 (2017), no. 1, 1–19.
- Mendoza, José M. Existence of solutions for a nonhomogeneous semilinear fractional Laplacian problems. Houston J. Math. 45 (2019), no. 2, 589–599.