- Caramello, Francisco C., Jr.; Töben, Dirk Positively curved Killing foliations via deformations. Trans. Amer. Math. Soc. 372 (2019), no. 11, 8131–8158.
- Lobos, G. A.; Tassi, M. P. A classification of pseudo-parallel hypersurfaces of $\Bbb S^n\times\Bbb R$ and $\Bbb H^n\times\Bbb R$. Differential Geom. Appl. 62 (2019), 72–82.
- Darós, Alisson; Arruda, Lynnyngs Kelly; On the instability of elliptic traveling wave solutions of the modified Camassa–Holm equation. J. Differential Equations 266 (2019), no. 4, 1946–1968.
- do Rei Filho, C.; Tojeiro, R. Minimal conformally flat hypersurfaces. J. Geom. Anal. 29 (2019), no. 3, 2931–2956.
- de Oliveira, César R.; Pigossi, Mariane Proof of dynamical localization for perturbations of discrete 1D Schrödinger operators with uniform electric fields. Math. Z. 291 (2019), no. 3-4, 1525–1541.
- Carvalho, R. S.; Oréfice-Okamoto, B.; Tomazella, J. N. μ-constant deformations of functions on an ICIS. J. Singul. 19 (2019), 163–176.
- Samprogna, Rodrigo; Gentile Moussa, Cláudia B.; Caraballo, Tomás; Schiabel, Karina Trajectory and global attractors for generalized processes. Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 8, 3995–4020.
- Samprogna, R. A.; Schiabel, K.; Gentile Moussa, C. B. Pullback attractors for multivalued processes and application to nonautonomous problems with dynamic boundary conditions. Set-Valued Var. Anal. 27 (2019), no. 1, 19–50.
- Ferreira, Fabiana Maria; de Paiva, Francisco Odair On a resonant and superlinear elliptic system. Discrete Contin. Dyn. Syst. 39 (2019), no. 10, 5775–5784.
- Arcoya, David; de Paiva, Francisco Odair; Mendoza, José M. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. [Existence of solutions for a nonhomogeneous elliptic Kirchhoff type equation] J. Math. Anal. Appl. 480 (2019), no. 2, 123401, 12 pp.
- Lobos, G. A.; Tassi, M. P.; Yucra Hancco, A. J. Pseudo-parallel surfaces of 𝕊nc×ℝ and ℍnc×ℝ. Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 3, 705–715.
- Silva de Souza, C. H.; Tomazella, J. N. Erratum to "Magic p-dimensional cubes'': (Acta Arith. 96 (2001), 361–364). Acta Arith. 191 (2019), no. 1, 95–100.
- Ebert, Marcelo Rempel; Lourenço, Linniker Monteiro The critical exponent for evolution models with power non-linearity. New tools for nonlinear PDEs and application, 153–177, Trends Math., Birkhäuser/Springer, Cham, 2019.
- Barostichi, Rafael F.; Figueira, Renata O.; Himonas, A. Alexandrou Well-posedness of the "good'' Boussinesq equation in analytic Gevrey spaces and time regularity. J. Differential Equations 267 (2019), no. 5, 3181–3198.
- Guimarães, Mateus Balbino; Hurtado, Elard Juarez; Rodrigues, Rodrigo da Silva Existence and multiplicity of solutions for non-degenerate Kirchhoff type problem with nonlinear boundary condition. Electron. J. Differential Equations 2019, Paper No. 42, 12 pp.