ON CYLINDRICALLY BOUNDED H-HYPERSURFACES OF $\mathbb{H}^n \times \mathbb{R}$

GREGORIO PACELLI BESSA

Abstract. Calabi, [1] in the sixties asked whether there were complete bounded minimal surfaces in \mathbb{R}^3. It is well known that this question was completely answered. See [5], [3] for non-existence of complete bounded minimal surfaces with bounded sectional curvature, see [2] for non-existence of complete bounded minimal surfaces with sectional curvature with strong quadratic decay and see [4] for the first example of a complete bounded minimal surface in \mathbb{R}^3. Naturally, one can ask whether there are complete bounded minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$. We prove in a joint work with Silvana Costa the following theorem

Theorem 1. Let M be a complete hypersurface immersed in $\mathbb{H}^n \times \mathbb{R}$ with Ricci curvature with strong quadratic decay. If M is cylindrically bounded then $\sup_M \geq (n - 1)/n$.

PS:

Definition 2. A complete Riemannian manifold M has Ricci curvature Ric_M with strong quadratic decay if

$$\text{Ric}_M(x) \geq -c^2 \left[1 + \rho_M^2(x) \log^2(\rho_M(x) + 2) \right],$$

where ρ_M is the distance function on M to a fixed point x_0 and $c = c(x_0) > 0$ is a constant depending on x_0.

References

Universidade Federal do Ceará - Brazil
E-mail address: bessa@mat.ufc.br