Higher Order Endomorphisms

ROBERTO RIBEIRO PATERLINI

Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP and Instituto de Matemática
Pura e Aplicada, Rio de Janeiro, RJ

A higher order endomorphism is a type of discrete dynamical system with memory. This note is an announcement of the main results of our doctoral thesis presented at IMPA in 1980. I am grateful to my advisor professor Jorge Sotomayor and to CNPq for financial support during the preparation of this work.

1. INTRODUCTION

Let M be a smooth compact boundaryless manifold. Let k be an integer ≥ 1. We denote by M^k the product manifold $M \times \ldots \times M$ (k-times).

1.1. Definition. An endomorphism of order k (or k-endomorphism) is a map $f: M^k \to M$. A sequence $(x_n)_{n \geq 1}$, $x_n \in M$ for all $n \geq 1$, is an orbit of f if it satisfies the condition $f(x_{n+k}) = x_{n+k}$ for all $n \geq 1$. Hence, the orbit $(x_n)_{n \geq 1}$ is determined by the k-tuple (x_1, \ldots, x_k).

An endomorphism $f: M \to M$ is called a 1-endomorphism in our notation. If $k \geq 2$ we say that such a k-endomorphism is a higher order endomorphism.

In the classical literature objects like higher order endomorphisms were called recurrences. See (M).

1.2. We will describe the dynamics of a k-endomorphism $f: M^k \to M$ using the endomorphism \tilde{f}, defined by $\tilde{f}(x_1, \ldots, x_k) = (x_2, \ldots, x_k, f(x_1, \ldots, x_k))$, which we will call the lifting of f. There is a close relationship between the dynamics of f and that of \tilde{f}. In fact, let $(x_n)_{n \geq 1}$ be an orbit of f. Then the orbit of \tilde{f} beginning in (x_1, \ldots, x_k) is $\{(x_n, x_{n+k-1}) : n \geq 1\}$. Moreover every orbit of \tilde{f} has this form.

1.3. Definition. A periodic orbit of f is a p-tuple (x_1, \ldots, x_p) such that $f(x_1, \ldots, x_k) = x_{k+1}$, $f(x_2, \ldots, x_{k+1}) = x_{k+2}$, \ldots, $f(x_{p-k+2}, \ldots, x_p, x_1) = x_{p-k+2}$, $f(x_{p-k+2}, \ldots, x_p, x_{k-1}) = x_k$ for all $k < p$. If $k \geq p$ the definition is analogous. In particular a fixed point of f is an element $x \in M$ such that $f(x) = x$. The period of the periodic orbit (x_1, \ldots, x_p) is p if it is minimal with respect to the above conditions.

1.4. The correspondence between orbits of f and \tilde{f} established in 1.2 preserves periodic orbits and their periods. At each periodic orbit (x_1, \ldots, x_p) of f with period p corresponds the periodic orbit $\{(x_1, \ldots, x_k), (x_2, \ldots, x_{k+1}), \ldots, (x_{p-k+2}, \ldots, x_p, x_1, \ldots, x_{k-1})\}$ of \tilde{f} with period p. Moreover, every periodic orbit of \tilde{f} has this form. Furthermore this correspondence preserves invariant sets, ω-limit sets and some kinds of attractors.

2. GENERIC PROPERTIES OF k-ENDOMORPHISMS

2.1. Definitions. Let $f \in C^r(M^k, M)$, $r \geq 1$, and let (x_1, \ldots, x_p) be a periodic orbit of f with period p. This orbit is hyperbolic if every eigenvalue of $Df(x_1, \ldots, x_k)$ has norm $\neq 0, 1$.

Let $H_p = \{f \in C^r(M^k, M) : \text{every periodic orbit of } f \text{ with period } \leq p \text{ is hyperbolic}\}$

and let \(KS'(M^k, M) \) be the set of \(f \in C'(M^k, M) \)
which satisfy:

a) The periodic orbits of \(f \) are all hyperbolic;
b) If \((x_1, \ldots, x_n) \) is a periodic orbit of \(f \) with period \(p \), let \(W^s_{loc}(x_1, \ldots, x_n) \) be the local stable manifold of \(f \) at \((x_1, \ldots, x_n) \).

Then the set \(W^s(x_1, \ldots, x_n) = \{ x \in M : \exists \ n \in Z, \ f^n(x) \in W^s_{loc}(x_1, \ldots, x_n) \} \) is a 1-1 immersed submanifold of constant dimension.

c) If \((y_1, \ldots, y_n) \) is another periodic orbit of \(f \) with period \(q \) and \(W^u_{loc}(y_1, \ldots, y_n) \) is the local unstable manifold of \(f \) at \((y_1, \ldots, y_n) \), then \(f^n | W^u_{loc}(y_1, \ldots, y_n) \) is transversal to \(W^s(x_1, \ldots, x_n) \).

We say that \(f \in KS'(M^k, M) \) is a Kupka-Smale \(k \)-endomorphism.

The following theorem extends a result of M. Shub. See (S).

2.2 Theorem. \(H_p \) is open and dense in \(C'(M^k, M) \) for all \(p \geq 1 \). Moreover \(KS'(M^k, M) \) is residual in \(C'(M^k, M) \).

2.3. Remark. Note that the map \(C'(M^k, M) \to C'(M^k, M), f \to \tilde{f} \), is an embedding and \(C'(M^k, M) \) is a submanifold of \(C'(M^k, M) \). Then theorem 2.2 says that \(KS'(M^k, M) \cap C'(M^k, M) \) is residual in \(C'(M^k, M) \), where \(KS'(M^k) \) is the space of \(C' \) Kupka-Smale endomorphisms of \(M^k \).

3. A STABILITY THEOREM

3.1. Let \(k \) and \(s \) be integers such that \(k \geq s + 1 \) and \(s \geq 1 \). Let \(C'_s(M^k, M) \) denote the subspace of \(C'(M^k, M) \) consisting of the elements \(f \in C'(M^k, M) \) which satisfy the following conditions:

a) \(f \) is injective in the first variable; and
b) \(D_x f(p) \) is an isomorphism for all \(p \in M^k \).

\(C'_s(M^k, M) \) is an open subspace of \(C'(M^k, M) \) and \(C'(M^k, M) \) is considered embedded in \(C'(M^k, M) \) by the map \(f \to f_0, f_0(x_1, \ldots, x_k) = x_i(x_{k-s+1}, \ldots, x_k) \).

Hence \(f_0 \in C'_s(M^k, M) \) is a \(k \)-endomorphism independent of the first \(k-s \) variables.

The theorem below asserts that every \(k \)-endomorphism sufficiently close to \(f_0 \) in the \(C' \) topology behaves like an \(s \)-endomorphism.

Before we examine the particular case \(k = 2 \) and \(s = 1 \).

3.2. Example. Let \(f \in C'_1(M^k, M) \) (hence \(f \) is a diffeomorphism) and let \(\gamma : M^k \to M, \gamma(x,y) = f(x) \).

The graph of \(\gamma \) is \(\gamma \)-invariant \(C' \) submanifold of \(M^2 \) and \(\tilde{\gamma} \) is a \(C' \) diffeomorphism. The "horizontal lines" \(\tilde{M}_p = \{(x, y) : x \in M \} \) where \(p = (\phi^{-1}(y), y) \in \gamma \) constitute a stable invariant family for \(\tilde{\gamma} \) such that \(\tilde{\gamma}(\tilde{M}_p) = \{(y, \phi(y)) : y \in \gamma \} \) for all \(p \in \gamma \). We have \(\tilde{\gamma}(M^2) = \gamma \) and \(\tilde{\gamma} | \gamma \) is conjugate to \(\phi \). This structure is persistent in \(C'(M^k, M) \) according to the following

3.3. Theorem. Let \(f \in C'_s(M^k, M) \) and \(f_0 : M^k \to M \) given by \(f_0(x_1, \ldots, x_k) = \phi(x_{k-s+1}, \ldots, x_k) \).

Let \(\gamma : M^k \to M_0 \) be the lifting of \(f_0 \). Then there exists a neighborhood \(\eta \) of \(f \) in \(C'(M^k, M) \) such that every \(g \in \eta \) has an invariant submanifold \(V_g \) diffeomorphic to \(M^k \), \(g | V_g \) is a \(C' \) diffeomorphism and \(V_g \subset V_{\tilde{\gamma}} \) if \(g \to \tilde{\gamma} \). Moreover there exists a neighborhood \(U \) of \(V_{\tilde{\gamma}} \) in \(M^k \) such that for all \(g \in \eta \) we have \(g^{-1}(M^k) \subset U \) and \(U \) is foliated by a continuous family \{\(W_{\gamma}(g, p) \)\} of \(C' \) stable discs pairwise disjoint and transversal to \(V_{\tilde{\gamma}} \).

Furthermore if \(g \in \eta \cap C'(M^k, M) \) then there exists a \(f_0 \in C'(M^k, M) \) whose lifting \(f : M^k \to M_0 \) is conjugate to \(\psi | V' \).

REFERENCES

